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ABSTRACT: Ultraviolet-to-infrared fluorescence is a versa-
tile and accessible assay modality but is notoriously hard to
multiplex due to overlap of wide emission spectra. We present
an approach for fluorescence called multiplexing using
spectral imaging and combinatorics (MuSIC). MuSIC
consists of creating new independent probes from covalently
linked combinations of individual fluorophores, leveraging the
wide palette of currently available probes with the mathematical power of combinatorics. Probe levels in a mixture can be
inferred from spectral emission scanning data. Theory and simulations suggest MuSIC can increase fluorescence multiplexing
∼4−5 fold using currently available dyes and measurement tools. Experimental proof-of-principle demonstrates robust
demultiplexing of nine solution-based probes using ∼25% of the available excitation wavelength window (380−480 nm),
consistent with theory. The increasing prevalence of white lasers, angle filter-based wavelength scanning, and large, sensitive
multianode photomultiplier tubes make acquisition of such MuSIC-compatible data sets increasingly attainable.
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■ INTRODUCTION

Fluorescence in the UV to infrared range is one of the most
widely used and easily accessible quantitative and qualitative
assay modalities across the life and physical sciences.1 Yet,
fluorescence is notoriously hard to multiplex, that is, to measure
multiple analytes simultaneously in a mixture. Typical
fluorescence multiplexing is routinely limited to about four
colors, each corresponding to a single measurement.2 For
example, one of the arguably most multiplexed and data dense
experimental modalitiesIllumina “next-generation” deep
DNA sequencingrelies on such four-color imaging, one for
each DNA base.3 This four-color standard is the case when
fluorescence emission is collected via broad-banded filters, as
opposed to the entire emission spectra.
When so-called hyper-spectral or fluorescence emission

scanning is employed along with linear unmixing,4,5 measure-
ment of up to seven analytes or even eight is possible.6−11 Cycles
of staining tumor sections with fluorophore-labeled antibodies,
coupled with chemical inactivation and multiple rounds of
staining, has been reported to analyze 61 antigens.12 A similar
principle has been applied without the use of a proprietary
instrument to produce cyclic immunofluorescence that uses
repeated rounds of four color imaging for ∼25 analytes.13
Specific assay instantiations that separate analytes in a variety

of ways have also been able to reach higher multiplexing
capabilities. For example, super-resolution imaging combined
with in situ hybridization and combinatorial labeling used
fluorescence to measure 32 nucleic acids in single yeast cells.14

The Luminex xMAP system can multiplex ∼40 analytes

separated by specific beads.15 Segregating fluorophores by
individual bacterium can multiplex ∼28 different strains using
“CLASI-FISH.”16 Alternatives to fluorescence are also of course
many, for example, mass cytometry, which measures levels of
∼30 specific isotope tags as opposed to fluorophores.17,18

Despite these advances, there remains yet to be reported, to
our knowledge, a fluorescence-based technology that simulta-
neously can demultiplex more than four to seven analytes within
a mixture. Such an ability may have widespread impact, due to
the prevalence, sensitivity, and versatility of fluorescence as a
measurement tool. Here, we report such an advance, which we
term multiplexing using spectral imaging and combinatorics
(MuSIC). MuSIC works by creating covalent combinations of
existing fluorophores and measuring fluorescence emission
spectra of their mixtures. We first describe the theoretical basis
for MuSIC, and then through simulation studies explore
potential limits of the approach. Finally, we experimentally
demonstrate the feasibility of MuSIC to measure the levels of
nine different fluorescent probes in a mixture using only ∼25%
of the available spectral window of fluorescence excitation
(380−480 nm), supporting a potential 5-fold increase in
fluorescence multiplexing ability. The advent and accessibility
of white lasers, angle filter-based emission wavelength scanning,
and large, sensitive multianode photomultiplier tubes make
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acquisition of such MuSIC-compatible data sets increasingly
attainable.

■ RESULTS AND DISCUSSION

Theory. Fluorescence emission follows principles of linear
superposition.2 Therefore, the emission spectra of a mixture of
fluorophores can be cast as the sum of its component parts with a
matrix equation (Figure 1A).

μ = ·R f (1)

Here, μ is an n-by-1 vector of measured fluorescence emission
intensities at n emission wavelength/excitation channel
combinations, R is the n-by-m matrix of reference emission
intensity spectra for m individual fluorescent probes aligned in
columns (which could include a column for background
fluorescence), and f is an m-by-1 vector containing the relative
levels of the m individual probes. The reference spectra
correspond to those of each individual probe in isolation.
Note that this equation also can account for multiple nex
excitation channels (Figure 1A).

∑=
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n n
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n

i
1

em

ex
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where i denotes the excitation channel index and nemi is the
number of emission wavelengths measured in that excitation
channel. In this case, the rows in every column of the reference
matrix R must be arranged in the same order of excitation
channels and wavelengths, along with the measurements μ
(Figure 1A).
Solving eq 1 for f to infer the relative levels of m individual

probes is called “linear unmixing.”4,5 Mathematically, solving for
f requires the rank of the matrix R to be greater than or equal to
m. By increasing the rank of R, one increases the number of
individual component levels m that can be independently
estimated from fluorescence emission spectra measurements. A
typical way to increase the rank of R is to use multiple excitation
channels, which is the intuitive basis for traditional multicolor
imaging. Yet, increasing the number of excitation channels does
not guarantee increasing the rank of R, because redundant
information could be added. For example, exciting yellow
fluorescent protein (YFP) variants with 505 and 510 nm light
would usually not increase the rank ofR because they are excited
in a similar manner by both of these excitation wavelengths.

Figure 1.Theoretical basis for multiplexing using spectral imaging and combinatorics (MuSIC). (A) Example arrangement of data for a three probe (m
= 3) setup in terms of the linear unmixing equation. Emission spectra data (μ) of a mixture are arranged vertically, stacked by emission wavelength and
excitation channel (indicated by color and background highlighting). Each column of the reference matrix is the emission spectra of a probe in
isolation, arranged in the same way. (B) Example data for a three probe setup involving a teal fluorescent protein (mTFPl), a yellow fluorescent protein
(mVenus), and their covalent fusion (mTFPl-mVenus). Two excitation channels are used, 430 and 505 nm, and fluorescence emission spectra are
measured.
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Multiplexing with Spectral Imaging and Combinatorics
(MuSIC) works by using covalently linked combinations of
fluorophores to add columns to R which increase its rank. Each
new fluorophore combination has a new column in R, and if it
increases the rank of R by one, then in theory its levels can be
estimated through linear unmixing (we use simulation below to
explore this more practically with added noise). Consider here a
simplistic illustration with experimental data from teal
fluorescent protein (mTFP1) and YFP (mVenus; Figure 1B).
Although this example will seem trivial, it is intended to convey
the essence of the approach in an overtly obvious manner. If one
excites at 430 and 505 nm, then mTFP1 and mVenus emission
are largely separated by independent excitation, and one can
quantify the levels of mTFP1 and mVenus in a mixture, a
standard two-color experiment. However, in the spectral
emissions from both channels, there is “room to carry” more
information, and in particular the red-shifted portion of the 430
nm excitation channel. Because the excitation spectrum of
mVenus overlaps with the emission spectrum of mTFP1, they
exhibit fluorescence resonance energy transfer (FRET) when in
close proximity. By including an mTFP1−mVenus fusion in the
experiment, the acceptor mVenus emission becomes strongly
visible in the 430 nm channel by FRET (Figure 1B, far right
panel). This increases the rank of R by one and allows
quantification of mTFP1, mVenus, and mTFP1-mVenus levels
in a mixture.
This analysis suggests to us that the creation of a new MuSIC

fluorescence probe requires that (i) there is sufficient FRET to
allow observable fluorescence emission of the acceptor in a new
excitation channel and (ii) the resulting emission spectra of the
new combination fusion probe is sufficiently distinct from all the
other probes in at least one excitation channel. We use these
guidelines in the subsequent simulation studies to explore the
potential limits of this line of reasoning and more precisely
define these sufficiency criteria.

Simulation Studies to Explore Limits and Potential of
MuSIC. The above theoretical considerations suggest that
MuSIC may offer large increases in fluorescence multiplexing
capabilities. However, there are multiple practical questions.
How many probes might be multiplexed and their levels
estimated simultaneously from a mixture? How many excitation
channels might be needed? What spectral emission resolution is
sufficient? Are some probe combinations better than others?
How robust is the approach to experimental noise? We
performed simulation studies to give insight into these questions
and guide subsequent experimental efforts (Figure 2A).
Specifically, we considered 16 individual fluorescent proteins
(FPs): EBFP2,19 mTagBFP2,20 mT-Sapphire,21 mAmetrine,22

mCerulean3,23 mTFP1,24 LSSmOrange,25 EGFP,26 TagYFP,27

mPapaya1,28 mOrange2,29 mRuby2,30 TagRFP-T,29 mKate2,31

mCardinal,32 and iRFP.33 This is an admittedly small sample,
and there are many others available (e.g., refs 34, 35), but this
selection was sufficient for a meaningful start. We selected these
to span the UV to IR spectrum, for reported photostability, and
approximately similar brightness (although this last task is
reasonably difficult). We hypothesized that having similar
brightness levels would help to increase dynamic range.
The first aspect of this simulation study was to consider how

to combine the individual FPs. Bimolecular FRET is common,36

and trimolecular FRET less so, but has been reported.37 We
therefore exhaustively considered single FPs, dimers, and
trimers but filtered all dimers and trimers where FRET efficiency
was expected to be <0.2 (based on calculated spectral overlap
integralsee Methods). In practice, theoretical FRET can be
substantially different from observed FRET. For example, the
orientation of the FPs could be suboptimal, or their distance
could be further than the Förster radius. However, we reasoned
that this consideration of overlap integral was a reasonable
starting point for prioritizing certain combinations over others,
particularly since this was straightforward to estimate from

Figure 2. Simulation studies for the potential and limits of MuSIC. (A) Summary of how 16 considered fluorescent proteins are converted into 175
putativeMuSIC probes, of which∼35 have acceptable quantitative behavior using∼10 excitation channels and∼25 using four excitation channels. (B)
Rankof the reference matrix containing all 175 potential MuSIC probes as a function of the number of excitation channels. Full rank is achieved at 31
excitation channels. (C) Condition number (log scale) of the reference matrix containing all 175 potential MuSIC probes as a function of the number
of excitation channels. (D) The number of probes that have a correlation coefficient greater than 0.7 after reducing the number of probes from the
original 175, as a function of the number of excitation channels. Error bars denote standard deviation across five probe reduction simulations.
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available literature data, whereas orientation and distance were
difficult to assess without specific experiments. This gave rise to

175 probes that could potentially be quantified from perfect
noise free measurements so long as R is of full rank (see

Figure 3. Experimental evaluation of MuSIC. (A) Experimental design. Nine different MuSIC probes were constructed from five fluorescent proteins
as indicated. Excitation wavelengths were limited to between 380 and 480 nm. The pure probes were combined into mixtures with known amounts,
their emission spectra were measured, and then their levels were estimated via unmixing. These inferred levels were compared to the actual, known
levels in the mixture. (B) Aggregate quantitative agreement between actual and inferred levels across mixtures and probes. Dashed blue line is x = y;
Pearson’s correlation coefficient is shown. (C) Histogram of errors, defined as the difference between actual and inferred probe levels, across mixtures
and probes. (D,E) Analogous plots as in B and C, respectively, segregated by probe. In D, text in upper left is Pearson’s correlation coefficient. (F) Heat
maps of quantitative agreement between actual (top) and inferred (below) levels broken down by probe (vertical) and mixture (horizontal). Text
below refers to the type of mixture: 2-way means two probes were included in the mixture; 3-way, three; and so on. Color bar indicates relative probe
levels. (G) Receiver-operator characteristic (ROC) curve for binary classification of probe presence or absence across the 48 mixtures. The inferred
probe level was compared to a threshold for classification as present or absent. This threshold was varied to generate the ROC curve and was uniformly
applied across samples and probes. AUC: area under the curve.
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Supporting Information Table S1). However, determining the
rank of R requires selecting excitation wavelengths.
We first considered a scenario where using a large number of

evenly spaced excitation channels between 350 and 700 nm was
feasible. We varied the number of excitation channels from four
to 60, estimated the relative excitation strength of each probe at
each excitation wavelength (from known excitation spectra),
and summed the calculated emission intensity in 1 nm
increments from 300 to 850 nm (based on the excitation
strength, predicted FRET efficiencies, reduced FRET efficiency
from direct acceptor excitation, and FP brightnessessee
Methods). There are diminishing returns past 31 excitation
channels, whereR saturates at a full rank of 175 (Figure 2B). The
condition number is a metric that can be thought of as
quantifying the practical rank of a matrix, where lower numbers
indicate a better ability to solve the linear unmixing problem in
eq 1. The condition number also starts to decrease sharply
around the same number of excitation channels (Figure 2C).
However, its magnitude suggests that unmixing performance
may be inadequate in terms of % error; values ∼107 indicate a
likely ill-conditioned matrix, and this large value decreases
marginally with increasing number of excitation channels.
We next sought to identify how many probe levels might be

reliably quantified using a large number of excitation channels
(40), and also how that number of probes changes as the
number of excitation channels is reduced down to a more typical
four. We simulated multispectral measurements 20 times by
sampling probe levels between 0 and 1000 relative concen-
tration units, calculating the expected emission spectra (as
above), adding noise to those spectra (similar to what is
measured in below experiments), and then unmixing to estimate
the probe levels. By adding noise to the simulated data, this
allowed us to assess how robust the approach might be in
practice. We quantified performance with a Pearson correlation
coefficient ρ between the known, randomly sampled levels and
estimated, unmixed levels for each of the 175 (or fewer) probes.
We progressively eliminated those probes with the lowest
correlation coefficient until all probes could be reliably
quantified over 3 orders of the sampled concentration
magnitude with ρ > 0.7 in simulations.
In the case of 40 excitation channels, first we found that the

same sets of probes were not recovered in independent
simulation runs. This is because adding noise to simulated
fluorescence emission spectra data is random, which causes
random probes to have the worst correlation coefficient during
the removal process. Therefore, we simulated probe removal five
independent times for each number of excitation channels
considered. We could not pinpoint discernible patterns for
which probes were included across multiple simulation runs (full
results in Supporting Information Table S2); single, double, and
triple probes were prevalent, across the spectrum of available
colors. This led us to hypothesize that the number of probes was
muchmore important than probe identity, and that performance
would likely have to be assessed experimentally on a probe by
probe basis.
For 40 excitation channels, we found roughly 30 probes could

be reliably quantified (Figure 2D). Surprisingly, as the number
of excitation channels was reduced, this number stayed constant
or even slightly increased, all the way to 10 excitation channels
where the number of probes was ∼35. We speculated that this
increase may be due to high quality probes being less likely to be
removed during the culling process, although the exact reasons
were difficult to pinpoint from the simulation data. With the

advent and affordability of white lasers,38 angle-tuned filters for
wavelength scanning,39,40 large, sensitive multianode photo-
multiplier tubes,41 and an ever-increasing number of highly
photostable fluorophores, such large excitation channel experi-
ments may become or are already feasible. Below 10 excitation
channels, the number of reliable probes decreases, although not
drastically.With the current standard of four excitation channels,
simulations suggest that approximately 25MuSIC probes can be
reliably quantified in a mixture.
These simulation results suggest that MuSIC may provide a

∼6-fold increase over a standard four color experiment, and up
to ∼8−9 fold if 10 excitation channels are used. They increased
our confidence that the approach should be adequately robust to
typical levels of experimental noise. Thus, these simulation
studies provided important guidelines to aid decision making in
the subsequent experimental studies.

Experimental Proof-of-Principal. We wanted to test
MuSIC experimentally. Rather than fully expand to the entire
spectrum of UV to infrared, we focused on a reduced range of
∼25% of the available excitation spectrum from 380 to 480 nm,
using the simulation studies above as a guideline for emission
spectra every 1 nm, and 10 excitation channels. We reasoned
that results here could be expanded and scaled subsequently
after determining what caveats and limitations are revealed by
reduction to practice that were not uncovered through the
theory and simulation studies. This focused us on nine
individual or combination probes that we created with
fluorescent proteins (FPs; Figure 3A). We cloned, expressed,
and purified these proteins (E. coli, His tag) and measured the
reference spectra of each to verify (i) identity and (ii)
appreciable FRET efficiency (Figure S1). Next, we created 48
different mixture samples from these nine individual probes
spanning two-way probe combinations to all probes present. We
prepared these mixtures in triplicate. We measured the emission
spectra of these mixtures in 1 nm increments from 10 equally
spaced excitation channels from 380 to 480 nm. From these
spectral emission scanning data, we solved eq 1 to estimate the
probe levels in each mixture. These “inferred levels” from
estimates are compared to the “actual levels” for analysis.
We first evaluated quantitative comparison between actual

and inferred levels across all 48 samples and probes in aggregate
(Figure 3B,C). This analysis revealed reasonable agreement with
most samples falling on or very close to the x = y line (black
dashes in Figure 3B; Pearson’s ρ = 0.94), with only a few outliers
away from this curve, and largely unbiased and symmetric error.
We parsed these analyses by probe (Figure 3D,E), which
revealed that not all probes performed equally. For example,
BFP and BFP-Orange were notably more variable than the
others (ρ = 0.87 and ρ = 0.80, respectively), and in ways where
the two might be mutually compensating for each other’s error
when it exists. This may be due to less-than-expected FRET
efficiency of the BFP-Orange tandem probe (Figure S1). All the
other probes, however, had quite tight error distributions and fell
largely along the x = y line (ρ = 0.94 to 0.99). These data suggest
MuSIC is capable of reasonable quantitative estimation of probe
levels from a mixture.
Next, we evaluated agreement between inferred and actual

levels by probe and by sample, both quantitatively and with
respect to binary classification (Figure 3F,G). Overall, MuSIC
does an excellent job of estimating the presence or absence of
probes across samples types, from those containing only two
probes to those containing most or all probes (Figure 3F). As
noted above, the few errors that are noticeable are related to BFP
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and BFP-Orange (e.g., third 2-way sample from the left), which
seem to anticorrelate. One way to evaluate the ability of MuSIC
to predict whether a probe is present or absent is by constructing
a receiver-operator characteristic (ROC) curve (Figure 3G).
Here, a cutoff for classifying a probe as present or absent is
varied, and the performance of classification based on the actual
levels is evaluated in terms of true positive and false positive rate.
Random classification falls along the x = y dashed line (AUC =
0.5).MuSIC has excellent classification performance, identifying
nearly all true positives before accumulating false positives (area
under the ROC curve = 0.98). Thus, we conclude that MuSIC is
capable of both quantitative and binary estimation of at least
nine probe levels in a mixture using only ∼25% of the available
spectrum for excitation. This suggests that future expansion
work to the entire spectrum may scale to even greater
multiplexing performance. Although we used fluorescent
proteins (FPs) here, one can envision mixing and matching
both FPs and small molecule fluorophores in a wide potential
range of applications, and even bring back in favor fluorophores
with complex, multimodal spectra that may have high
information content as a MuSIC probe.
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