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Abstract
Purpose of Review There is a contemporary push to map tissues and their disease states quantitatively at single-cell and spatial
resolution, but standard assays to do so, such as immunohistochemistry, have been historically lowly multiplexed (2–4 mea-
surements). This push has driven the development of several new multiplexed techniques for quantitative tissue imaging, which
we review here.
Recent Findings Standard multiplexed imaging is primarily limited by fluorophore spectral overlap. Innovations increasing
multiplexing capacity include iterative cycles of staining/bleaching/imaging, imaging mass spectrometry with metal-
conjugated antibodies, leveraging fluorophore combinatorics, and coupling to sequencing-based methods.
Summary Recent progress has increased image-based multiplexing roughly 10-fold and, in some cases of nucleic acid analytes,
to genome scale. This has given unprecedented biological and disease knowledge, but there is still substantial work to achieve
genome scale across all types of analytes, as well as spatial scales greater than ~millimeters. Concomitantly, challenges in data
storage, retrieval, and analysis will need to be solved moving forward.

Keywords Imaging . Highly-multiplexed . Fluorescence .Mass spectrometry . Sequencing

Introduction

Human tissues consist of complex networks of interacting
cells [1, 2, 3•, 4]. The architecture of a tissue, and to a large
extent function, is defined by spatial organization of its cellu-
lar and extracellular compartments [5–7]. The architecture of
normal and diseased tissues influences the development of a
disease as well as receptiveness and resistance to therapy [8,
9]. The ability to characterize and gain further understanding
of tissue architecture through imaging has driven progress in
biology and pathology [10–13]. Immunohistochemistry (IHC)
is a conventional tool used in clinical diagnostics and research
laboratories to assess the spatial distribution of typically two

to four analytes in a single sample [14–19]. However, IHC has
a variety of limitations, such as the requirement of a new
sample or serial section for each analyte set, which limits
multiplexing, and non-linear relationships between analyte
abundance and staining intensity (when fluorescence is not
used), which limits quantification [20, 21]. Other methods
exist which are highly multiplexed and provide quantitative
data, such as deep sequencing, or even single-cell sequencing
[22]. However, they have the limitation that spatial informa-
tion in a tissue is often lost [23]. There is currently a large
technological gap for methods that are image-based but offer
more quantitative multiplexing at single-cell spatial resolution
[20].

There are a variety of biological and disease applications
for multiplexed tissue imaging; one example is cancer [20].
The NIH-funded Human Tumor Atlas Network was
established to, in part, complement the tremendous efforts of
The Cancer Genome Atlas with spatial information [24].
Tumor heterogeneity is multi-dimensional including variation
in driver mutation profiles across space, extracellular matrix
structure, soluble factor, and oxygen gradients, as well as mul-
tiple important cell types such as immune infiltrates and
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tumor-associated fibroblasts that interact with tumor cells to
influence tumor microenvironment [25•, 26–30]. This inher-
ent tumor heterogeneity makes diagnosis, prognosis, and
treatment a challenge because of its unknown impact on the
tumor’s evolution and drug sensitivity profile [25•, 31–33].
More highly multiplexed imaging tools and techniques will
facilitate characterizing and better understanding tumor het-
erogeneity, helping to inform diagnosis, prognosis, and
treatment.

In this review, we survey recent advances in image-based
multiplexing technologies capable of single-cell spatial reso-
lution, with focus as well on their quantitative features to some
extent. Although major advances have been made with radio-
logical methods including PET, CT, and MRI, we focus this
review on techniques with higher spatial resolution and rather
refer the reader to other resources on such topics [34–36].
These technologies can generally be divided into three cate-
gories: fluorescence-based, mass spectrometry-based, and
very recently sequencing-based, which we enumerate below
and are summarized in Table 1 and Fig. 1. These advances in
imaging techniques have enabled the analysis of significantly
more parameters in cells and tissues than what was previously
possible, providing significant progress towards deeply char-
acterizing the tumor microenvironment and other tissue or
spatial analyses—a new grand challenge of biology for the
twenty-first century post-genomic era.

Fluorescence-Based Methods

Central to fluorescence microscopy are fluorescent dyes at-
tached to affinity binders, such as antibodies or oligonucleo-
tides, which then associate with a targeted analyte, such as
proteins, RNA, or DNA, allowing visualization and analysis
[53]. Fluorescence-based methods can be divided into filter-
based and spectral techniques. Filter-based fluorescence im-
aging uses optical films that allow relatively broad wavelength
ranges of light to excite fluorophores in samples and the sub-
sequent emission light to pass onto a detector, but
multiplexing is limited usually to about four colors by inevi-
table spectral overlap. Spectral overlap occurs when
fluorophore’s excitation and/or emission spectra share sub-
stantial wavelength ranges, such that filters cannot efficiently
separate them. Spectral (also called hyper-spectral) imaging
partially overcomes this issue of overlap because much finer
wavelength resolution for fluorescence emission is obtained
[45, 54], by using, for example, monochromators, prisms,
and/or diode arrays [55]. Currently, filter-based methods are
the predominant modality because of simplicity and cost.

There are currently a wide variety of different fluorescent
reporter agents available for these techniques. Examples in-
clude small organic molecules [56–58], fluorescent proteins
[59–61], photo-switchable dyes [62–64], quantum dots

[65–67], polymer dots [68, 69], and endogenous fluorescence
[70–72]. The pros and cons of each of these are extensively
discussed and reviewed as cited above, so we refer more in-
terested readers there, but generally most fluorescent reporters
are compatible across fluorescence-based imaging techniques.

Filter-Based

Filter-based fluorescence imaging is the most widely used
method for visualizing cells and tissues. There are a variety
of established textbook protocols (e.g., [73, 74]), and the re-
quired equipment is generally cheaper and more readily avail-
able than that for the methods that will be later described.

One way to achieve higher multiplexing is to simply per-
form repeated rounds of staining and imaging, with bleaching
of fluorophores between rounds. Several recent techniques
leverage this principle, including multiplexed fluorescence
microscopy (MxIF) [37•], iterative indirect immunofluores-
cence imaging (4i) [38], cyclic immunofluorescence (CycIF)
[39, 40••], and co-detection by indexing (CODEX) [41••].
These methods are in principle compatible with formalin-
fixed paraffin-embedded (FFPE) tissue, a common format
for preserving samples. They are limited by sample degrada-
tion across and the duration of each cycle.

MxIF measures up to 60 analytes in a single FFPE tissue
section using fluorophore-conjugated primary antibodies [75].
The MxIF procedure consists of acquiring background auto-
fluorescence, stainingwith four colors (one typically DAPI for
nucleus fiduciary in each round), acquiring immunofluores-
cence, dye inactivation using alkaline oxidation chemistry,
acquiring new background autofluorescence, restaining with
new fluorescent dye-conjugated primary antibodies, and ac-
quiring new images [37•]. The cycle is repeated until all target
analytes are measured. This technique was used to examine
colorectal cancer specimens and allowed the mapping of cel-
lular mechanistic target of rapamycin complex 1 (mTORC1)
and MAPK signal transduction patterns in tissues [37•], as
well as in other applications [75, 76].

CycIF assembles up to 60-plex images of tissue sections
via successive rounds of four-channel imaging [77], similarly
to MxIF. Cycles involve four steps: immunostaining with
fluorophore-conjugated primary antibodies, staining with a
DNA dye to mark nuclei and facilitate image registration
across cycles, four-channel imaging at low- and high magni-
fication, and fluorophore bleaching (oxidation in a high pH
hydrogen peroxide solution in the presence of light) followed
by a wash step and then subsequent rounds of staining [39,
40••]. CycIF is partly limited not only by the assay duration as
each cycle takes roughly 24 h to complete but also by sample
degradation similar to MxIF [39, 77]. A major difference be-
tween CycIF and MxIF is that MxIF requires more expensive
reagents and equipment, but has a shorter assay duration [78].
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The 4i method can detect up to 40 analytes [38]. So-called
“indirect immunofluorescence” uses an unconjugated primary
antibody and a fluorophore-conjugated secondary antibody,
rather than a single primary antibody directly conjugated to
the fluorophore, resulting in compatibility with “off-the-shelf”
antibodies. This is the main distinctive feature of 4i. The 4i
technique has been used to create multiplexed protein maps in
different phases of the cell cycle, in response to cell crowding,
inhibitors, and different growth conditions [79].

CODEX has visualized up to 66 DNA-conjugated antibod-
ies in a single image [41••]. The barcode information is
encoded by an overhang sequence on the DNA duplex that
is read off in cycles of two-color imaging. Thus, 66 antibodies
need 33 rounds of imaging. Overhang lengths on each anti-
body can be as small as two (1 color code) or as large as
feasible for the experiment time scale and sample degradation
of cycling. Two types of “walking” nucleotides (G and A) are
used to traverse the overhang, and then, other two (U and T)
are labeled with either Cy3 or Cy5, respectively. First, a reac-
tion mixture leaving out A is incubated on the antibody-
stained sample. Only overhangs with C as the first base in
its sequence are capable of incorporating a fluorescently la-
beled nucleotide, and then, CGwould get a Cy3 label, and CA
would get a Cy5 label. Other overhangs with a CT sequence
do not yet receive a color. Next, a reaction mixture leaving out
G is incubated on the sample. Then, CTG would get a Cy3
label, and CTAwould get a Cy5 label. Other overhangs with a
CTC sequence do not yet receive a color. This strategy is
repeated for multiple rounds of extension on the overhang to
perform the multiplexed imaging. Thus, the barcode is then
the combination of the round in which a signal was detected,
plus whether the color was Cy3 or Cy5. CODEX was used to
determine that significant changes in expression levels in cer-
tain markers, such as B220, CD79b, or CD27, are dependent
on the tissue microenvironment in which the cells reside
[41••]. This drove the conclusion that cell populations that
are currently thought of as broadly expressing a certain marker
are actually comprised of multiple subphenotypes that corre-
late with the indexed niche identity [41••].

There are also non-spectral techniques that do not involve
cycles of imaging, but rather use super-resolution microscopy
and combinatorial labeling [42]. This method has many sim-
ilarities to standard fluorescence in situ hybridization (FISH)
involving fluorophore-conjugated oligonucleotide probes
complementary to mRNA targets [80–82]. However, because
in super-resolution microscopy, which drives beyond the dif-
fraction limit, each mRNAmolecule can be spatially resolved
in a single pixel (or voxel) and can hybridize to several differ-
ent color probes, the potential combination of fluorophores in
each pixel (or voxel) can be used to multiplex mRNA mea-
surements. Simple counting of spots with matched
fluorophore combination barcodes is the quantitative readout.
In proof-of-principle studies, three color barcodes with seven

fluorophores were used to profile transcripts from 32 stress-
responsive genes in single Saccharomyces cerevisiae cells.
Thus, a transcript is defined by a combination of 3 colors from
7 choices. The results were confirmed to match to those ex-
pected from more conventional readouts [42, 83].

In a recent follow-up, this approach was scaled tran-
scriptome wide (~ 30,000 transcripts/cell), in a technique
called seqFISH+, which combines the super-resolution notion
with the repeated rounds of imaging principal from above
[84••]. Here, the innovation was switching from transcripts
having real color barcodes to having “pseudo-color” barcodes.
Now, each transcript is only labeled with a single color
fluorophore, but is assigned a pseudo-color (1 to 20) based
on when this fluorescence signal is observed over 20 sequen-
tial rounds of hybridization. This has the added benefit of
having only 1/20th of the transcripts in the cell showing a
signal in a particular image. Then, these 20 sequential rounds
of imaging are repeated 4 separate times in an “outer loop” of
barcoding rounds. In barcoding rounds, the hybridization
round where a fluorescence signal appears (1 to 20) can be
different for each gene, giving rise to a possible number of
permutations on par with the genome.

Another non-spectral technique that does not involve cy-
cles of imaging is fluorescence lifetime imaging microscopy
(FLIM). FLIM works by determining the lifetime of the ex-
cited state in order to characterize the molecular species [85].
Within FLIM, there are two distinct methods; the time-domain
method and frequency-domain method [86, 87]. Time-domain
FLIM works by collecting the temporal emission profile at
each pixel. This is then fit to an exponential curve to determine
the fluorescence lifetime [87, 88]. Frequency-domain FLIM
operates by varying excitation intensity sinusoidally over time
and then determining the phase and amplitude shifts of the
emission as a function of the sinusoidal frequency. These
shifts are related to the fluorescence lifetime [89]. These two
complementary methods have their own advantages and dis-
advantages. Time-domain FLIM has a higher sensitivity for
measurements with low fluorescence with a single-photon
timing technique, whereas frequency-domain FLIM is gener-
ally faster and electronics are simpler [86, 89]. The basis by
which fluorescence lifetime can increase multiplexing is by
finding fluorophore combinations that can be separated by
short vs. long lifetimes, although this is not a common
approach.

Sample quality becomes increasingly important with cy-
cles of imaging and can become a major limiting factor for
these methods. For CyCIF, it was found that half of the tissue
samples tested could be routinely imaged up to 15 cycles with
20% loss of cells [40••]. However, it should be noted that
sample degradation widely varied across tissue types
(Fig. 4E from [40••]). Thus, extensive work remains to better
characterize how different tissue/cell type samples and also
how their mode of preparation (FFPE/frozen/etc.) impacts
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the ability to apply multiplexingmethods by repeated round of
imaging.

Spectral

Spectral imaging acquires much finer emission wavelength
information than non-spectral imaging, which allows one to
quantify mixtures of fluorophores with potentially heavily
overlapping spectra. Similar to filter-based techniques, spec-
tral imaging might also be performed using multiple rounds of
labeling, although this has not yet been described to our
knowledge. However, it is currently less popular than non-
spectral imaging because the equipment is more expensive,
and the technique is less established and therefore more
difficult.

Spectral imaging techniques are largely called hyper-
spectral and have been used to image up to seven analytes
simultaneously in tissues [43•, 44, 45, 90, 91], and even live
cells [92]. Analysis is broadly called linear unmixing, which
applies the principle of additivity of fluorescence emission
spectra to cast a linear algebra problem, which when solved
gives the levels of the individual fluorophores in each pixel.
Multiple fluorophores from ultraviolet to infrared are used
with (typically) three (or more) excitation channels. Design
of spectral imaging experiments is more complex than filter-
based, but there are metrics that can be used to help, such as
the figure of merit (FoM) [93•]. The FoM indicates how well a
given imaging protocol performs for a set of fluorophores,
relative to the case that these fluorophores are present singu-
larly and that their fluorescence can be measured noiselessly

Figure 1 Schematic of available highly multiplexed imaging methods.
The current highly multiplexed imaging techniques can be grouped into
three general categories: mass spectrometry-based, fluorescence-based,
and sequencing-based. Technique names are indicated with their
reported multiplexing capacity in parentheses. Rare earth metals
attached to antibodies are depicted for mass spectrometry. The

fluorescence imaging methods can be further divided into spectral and
non-spectral subcategories. Fluorescence emission spectral scan data for
two fluorophores exhibiting ± FRET is shown. The general cycling
procedure for multiplexing is depicted for non-spectral fluorescence
imaging. Sequencing data can be obtained from 10-μm diameter
sections in tissue samples. Tissue image from Al-Rasheed et al. [52]
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[93•]. Many modern and widely available confocal micro-
scopes also have an ability to perform emission spectral scans.
Hyper-spectral fluorescence imaging has a variety of medical
applications, including disease diagnosis and image-guided
surgery [45]. Although not tissue imaging, also of note are
recent flow cytometers that can perform spectral imaging,
such as Cytek Aurora [94].

Fluorescence multiplexing using spectral imaging and
combinatorics (MuSIC) builds on spectral imaging but uses
single or covalent combinations of existing fluorophores to
significantly increase the number of multiplexed analytes
[46••]. If a fluorophore covalent combination probe exhibits
significant Förster resonance energy transfer (FRET), then
mathematically, adding this probe to the linear unmixing prob-
lem is “well-posed,” and its levels can be estimated along with
the single fluorophores that make up the combination.
Multiplexing up to 9 such MuSIC probes was demonstrated
in solution-based assays over a restricted excitation wave-
length window (~ 1/4 of that available), and it has the potential
to scale to ~ 30 analytes [46••]. MuSIC is compatible with the
bleach-and-restain ideas from above, so multiplexing is poten-
tially multiplicative when combining the two ideas.Moreover,
because it has been shown to be compatible with fluorescent
proteins, it is in principle compatible live cells or tissues.

Another method for spectral imaging is spectrally resolved
fluorescence lifetime imaging microscopy (sFLIM). sFLIM
combines multiple excitation wavelengths (485 nm, 532 nm,
and 640 nm), time-domain FLIM via time-correlated single-
photon counting (TCSPC), and a diode array for 32 spectrally
separated detection channels [47]. A “pattern-matching” algo-
rithm (similar to linear unmixing) is used to determine the
individual contribution from each fluorophore to the overall
multi-dimensional (spectra + lifetime) fluorescence signal.
The algorithm is based on reference patterns of fluorescence
decay and spectral signatures from various cell samples that
are labeled with different fluorescent probes. sFLIM has been
used to visualize nine different target molecules simultaneous-
ly in mouse C2C12 cells [47].

Mass Spectrometry-Based Methods

In addition to fluorescence, there are also highly multiplexed
mass spectrometry methods for tissue imaging. Here, cells are
typically stained with metal-conjugated antibodies, whose
levels then can be quantified with mass spectrometry [49]. It
is easier to multiplex using mass spectrometry as compared
with fluorescence imaging because there is negligible spectral
overlap. Signal-to-noise is also improved because employed
metals are essentially non-existent in tissues. However, the
specialized mass spectrometry equipment (and to some extent
reagents) that interfaces with imaging is significantly more
expensive and not as widely available.

Current mass spectrometry methods include imaging mass
cytometry (IMC) [48•] and multiplexed ion beam imaging
(MIBI) [49], both of which multiplex using a panel of primary
antibodies conjugated with isotopically pure, rare-earth ele-
ments (e.g., lanthanides) [48•]. Metals are conjugated to anti-
bodies via a polymeric metal-chelating linker that is covalent-
ly linked to antibodies, or with metal nanoparticles [95]. In
IMC, once a tissue sample has been stained with the metal-
conjugated antibodies, it is dried and then positioned in a laser
ablation chamber [48•]. The tissue is then ablated spot by spot
and line by line, which sends material via a mixed argon and
helium stream to a CyTOFmass cytometer [48•]. This method
is capable of 32 simultaneous measurements [50]. IMC has
been used to assess the immune microenvironment in breast
cancer tissue, leading to the hypothesis that trastuzumab-
treated patients with high tumor-infiltrating lymphocyte levels
have improved outcomes [96]. MIBI is similar to IMC, but
uses an ion beam ablation (rather than a laser), and thus has
slightly different mass spectrometry requirements [48•, 49, 50,
95]. Biological specimens are immobilized on a conductive
substrate, stained with metal-conjugated antibodies, dried, and
loaded under vacuum forMIBI analysis [49]. This method has
been used to image 40 analytes simultaneously in breast tumor
tissue sections, but is potentially capable of up to 100 [49, 97].

Sequencing-Based Methods

So far, highly multiplexed sequencing methods that have
transformed genomics, transcriptomics, and epigenomics
have not been highly compatible with imaging. However, a
recent technological advancement called Slide-seq has en-
abled the transfer of RNA from tissue sections onto a surface
packed with DNA-barcoded beads at specified positions,
allowing the spatial analysis of gene expression in a tissue at
~ 10-μm resolution [51••]. This method first involves packing
of the DNA-barcoded beads on to a rubber-coated glass cov-
erslip, called the “puck.” This is followed by oligonucleotide
ligation and detection (SOLiD) sequencing to determine each
bead’s distinct sequence and x-y location [51••]. A tissue sec-
tion is placed on the “puck,” and mRNA from the tissue is
captured by the beads with minimal lateral x-y diffusion. After
capture, the bead/tissue section combination is homogenized
and prepared for mRNA sequencing (via more standard
Illumina-based methods), which subsequently allows relating
transcriptomes to spatial locations. Using Slide-seq, it was
determined that cell proliferation occurs in the first few days
after a traumatic brain injury and then transitions to differen-
tiation in the following weeks [51••]. The main costs associ-
ated with this method seem to be related to the price of the
pucks. As the price of these “pucks” and the associated se-
quencing drop, there is potential to be able to apply this meth-
od to entire organs or even entire organisms [51••]. One could
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similarly envision coupling other nucleic acid-based conju-
gate technologies to enable Slide-seq on analytes other than
mRNAs.

Data Analysis

Multiplexed image data are powerful but also come with sev-
eral data handling, visualization, and analysis challenges,
which are just beginning to be explored. Some of these tech-
niques include viSNE, which is used for dimensionality re-
duction [98], multi-omics heterogeneity analysis (MOHA),
which is used for image processing and visualization [25•],
open microscopy environment remote objects (OMERO)
servers, which are used for data handling, andmultiplex image
cytometry analysis (miCAT/histoCAT), which is for data han-
dling and analysis [99, 100]. viSNE is a technique that allows
visualization of high-dimensional single-cell data on a two-
dimensional map and is based on the now widespread t-
distributed stochastic neighbor embedding (t-SNE) algorithm
[98, 101]. In this method, each cell is represented as a point in
high-dimensional analyte space, with each dimension being
measurement of one analyte [98]. An optimization algorithm
searches for a projection of the points from the high-
dimensional space into two or three dimensions to the extent
that pairwise distances (e.g., Euclidian) between two points
(cells) are best conserved between the high- and low-
dimensional space [98]. Coupled with mass cytometry,
viSNE was used to compare leukemia diagnosis and relapse
samples [98]. This method could also be applied to IMC or
MIBI but requires additional image analysis steps to obtain
single-cell data.

The MOHA tool computes tissue heterogeneity metrics
from multiplexed image data by combining single-cell molec-
ular summary measures with pre-existing knowledge of bio-
logical pathways to assign states to cells in the tissue [25•].
This is followed by using positional cell information to com-
pute spatial cell state distributions, and importantly, correla-
tions between neighboring cell types. It then computes tissue
heterogeneity and diversity measures of the cells from the
observed distributions of thesemolecular and spatially defined
states [25•]. This technique was used to identify statistically
significant correlations between the intratumoral AKT path-
way state diversity and cancer stage and histological tumor
grade [25•].

OMERO is a flexible software platform that provides a
structured storage format for a range of biological data, includ-
ing images [102]. It is used to provide storage access, process-
ing, and visualization without downloading entire datasets
[102]. OMERO has been used in a variety of applications,
including CycIF [40••].

miCAT and histoCAT are analysis platforms that are used
for quantitative and comprehensive visualization of cell

phenotypes, cell interactions, microenvironments, and tissue
structures [99, 100]. They are coupled with IMC to investigate
cellular phenotypes and microenvironments of human breast
cancer, allowing insight into the network structure of cell
neighborhood interactions [99, 100].

Conclusion

The methods described here have increased our ability to
quantitatively understand the interactions between different
biological components in tissues and the regulatory networks
in single cells, but importantly, retaining information on how
it was arranged spatially. This has and will continue to trans-
form our ability to understand biology and disease. Although
multiplexed tissue imaging has come a long way in the past
decade, there remains much work to be done to go from the
currently possible dozens of measurements to the proteome
scale, especially with post-translational modifications. Very
recent methods have begun to approach this scale for the tran-
scriptome. The possibility of combining methods described
here could multiplicatively increase the amount of quantitative
information that can be obtained. For example, CycIF might
be combined with super-resolution imaging, and/or with
MuSIC-based approaches to increase the potential number
of simultaneous measurements. Moreover, it is not only
multiplexing that needs to improve further. Currently, cover-
ing more than ~millimeter length scales comprehensively is
extremely challenging other than by brute force with time and
money; innovation here is also needed to truly multiplex tissue
imaging, where important changes happen over centimeter
(and greater) scales. Tissue clearing techniques will likely play
a large role here [3•]. As these types of data become increas-
ingly available, storing the very large raw amounts of data, in
addition to analyzing them, will present major bottlenecks.We
expect yet still much innovation in these directions in the next
several years towards the genome scale, whole-tissue, or even
whole-body quantitative, single-cell imaging end goal.
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