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Drug response consistency in CCLE and CGP
arising from B. Haibe-Kains et al. Nature 504, 389–393 (2013); doi:10.1038/nature12831

The Cancer Cell Line Encyclopedia1 (CCLE) and Cancer Genome 
Project2 (CGP) are two independent large-scale efforts to characterize 
genomes, mRNA expression, and anti-cancer drug dose–responses 
across cell lines, providing a public resource relating cellular biochemical 
context to drug sensitivity. A recent study3 analysed correlations between 
reported dose–response metrics and found inconsistency between 
CCLE and CGP, thus questioning the validity of not only these, but also 
other current and future costly large-scale studies. Here, we examine two 

metrics of drug responsiveness (slope and area under the curve) that we 
derive from the original CCLE and CGP data, and find reasonable and 
statistically significant consistency. Our results revive confidence that 
the CCLE and CGP drug dose–response data are of sufficient quality for 
meaningful analyses. There is a Reply to this Comment by Safikhani, Z. 
et al. Nature 540, http://dx.doi.org/10.1038/nature20581 (2016).

CCLE and CGP share 2,520 dose–responses across 285 cell lines and 
15 drugs, but cells were treated with different dose ranges. To compare 
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Figure 1 | Consistency between pharmacological data in CCLE and 
CGP. a, Slope (ms; left) or area under the curve (AUCs; right) of the dose–
response curves for all overlapping drug/cell line pairs (2,520) in CCLE 
and CGP, considering only the shared dose range (denoted by subscript s).  
All ms and AUCs values were normalized based on the respective drug 
dose range, to facilitate comparison across drugs (see Supplementary 
Methods). Colour indicates density of dots. The black dashed line is x =​ y. 
In example dose–response curves, stars represent the shared dose range. 
b, Relationship between ms and AUCs for each database (inset m and AUC 
defined with the entire dose range as opposed to the shared dose range). 
The SVM classifier decision boundary divides the plot into sensitive and 
insensitive drug/cell line pairs, as indicated by the black dashed line. Slope 
and y-intercept of boundary line for CCLEs: m =​ −​1.32, b =​ −​0.01; CGPs: 
m =​ −1.31, b =​ −​0.06. Colour of dots indicates the mean of the binary 
classifications from eight manual curators; blue indicates a unanimous 
sensitivity rating, green a very uncertain rating, and red a unanimous 
insensitivity rating. c, Consistency (left) and inconsistency (right) of 
classification methods broken down by drug. Far left plot shows manual 
curation consistency between CCLE and CGP. Middle left plot shows 
consistency between the manual curation data from CCLE and the CCLE 

SVM classifier. Middle right plot shows consistency between the manual 
curation data from CGP and the CGP SVM classifier. Far right plot shows 
consistency between the CCLE SVM classifier used to classify CGP data 
and the CGP SVM classifier used to classify CCLE data. Colour indicates 
percentage consistency as denoted by the colour bar. Numbers denote 
number of observations, black for consistent, white for inconsistent. 
d, Inconsistent drug/cell line pairs based on manual curation results. 
Histograms bin the Euclidian distance between each discrepantly classified 
drug/cell line pair (that is, called sensitive in one database and insensitive 
in the other) and the decision boundary (black dashed line) in the AUCs 
versus ms plots for CCLE (left) or CGP (right). In inset, coloured dots 
indicate drug/cell line pairs that were classified discrepantly in CCLE and 
CGP. Colour corresponds to density of dots. Black dashed line indicates 
the decision boundary for the SVM classifier. Grey dashed lines indicate 
a Euclidian distance of 0.1 from the decision boundary in either direction 
e, IC50 values from all sensitive cell line/drug combinations as determined 
by SVM classifier in CCLE or CGP. The black dashed line is x =​ y. f, IC50 
values from all sensitive cell line/drug pairs (same as in Fig. 1e) stratified 
by drug, for drugs having at least 5 points. All correlation coefficients are 
Pearson.
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CCLE and CGP dose–responses, we calculated a common viability 
metric (0–100%) across a shared log10-dose range, and computed 
slope (ms) and area under the curve (AUCs) values (in which subscript 
‘s’ denotes the shared dose range) (Fig. 1a). This analysis revealed 
surprisingly good quantitative agreement between the two studies  
(ms: population Pearson correlation coefficient (ρ) =​ 0.52, P <​ 10−16; 
AUCs: ρ =​ 0.61, P <​ 10−16). Furthermore, since a small ms or large 
AUCs value indicates insensitivity, these data suggest that most cell 
lines are insensitive to the majority of tested drugs (~​85%, Fig. 1a, b). 
Characterizing such insensitive trends with a sigmoid model meant 
for sensitive cell lines (that is, half-maximum inhibitory concentration, 
IC50) may lead to incorrect dataset consistency conclusions.

To evaluate consistency of sensitivity classification between the two 
studies, we first asked eight people to curate binary sensitivity manually 
(all dose–response curves and their manually curated classification 
results are provided in the Supplementary Information). For manual 
curation, only data from a single database within the shared dose range 
was presented on each plot, and the order of plot presentation was 
randomized with respect to the study, the drug, and the cell line for each 
curator (see Extended Data Figs 1 and 2). Using the manual curation 
results, we built a separate support vector machine (SVM) classifier 
for each study with ms and AUCs as predictors (Fig. 1b). Both SVMs 
performed well (Fig. 1c, middle two plots), and the decision boundaries 
are independently similar for CCLE and CGP (Fig. 1b, black dashed 
line). These SVM classifiers also seem to parse data derived from 
the full (not shared) range of drug doses effectively (Fig. 1b; insets;  
m and AUC without subscript s), which may be important for future, 
database-specific analyses.

The manual curation data along with the SVM classifiers allowed 
evaluation of consistency between CCLE and CGP in terms of binary 
sensitivity classification (Fig. 1c). Comparison of manual curation 
results shows high (~​88%) and statistically significant consistency 
between the two studies overall (Cohen’s kappa (κ) =​ 0.53 ±​ 0.025), and 
for most individual drugs (Fig. 1c, far left). Using the CCLE SVM to 
classify CGP data, and vice versa (Fig. 1c, far right), also yielded high and 
statistically significant consistency (88%, κ =​ 0.55 ±​ 0.025). These results 
strongly suggest that drug dose–response data in the CCLE and CGP 
can be considered consistent when used to classify binary sensitivity.

The drugs 17-AAG, paclitaxel and TAE684 account for 48% of the 
inconsistent drug/cell line pairs. We hypothesized that most of these 
and other inconsistent drug/cell line pairs would be located near the 
SVM decision boundary. The primary reason is because this boundary 
necessarily travels through the region of AUCs–ms space where deter-
mining binary sensitivity is the most challenging for manual curators 
(Fig. 1b, cyan to yellow dots denote uncertainty among curators).  
If true, then this would imply that a main factor driving the observed 
inconsistency is self-induced: imposing a strict cutoff. Indeed, most 
such inconsistent points are located close to the decision boundary; 
for CCLE 53% of the inconsistent points are within 0.1 distance units 
from the decision boundary, and 51% for CGP (Fig. 1d). Manual 
inspection of these inconsistent binary classification cases also 
supports this interpretation (Supplementary Data 1). We do observe 
some strongly inconsistent drug cell/line pairs (for example, Fig. 1a 
inset-middle, and Supplementary Data 1), but these are relatively rare, 
and are highly likely to be located far from a decision boundary. These 
results suggest that inconsistency between the two studies on the level 
of binary classification is, to a large extent, a result of the information 
loss associated with collapsing a two-dimensional continuous descrip-
tion of drug sensitivity onto a single binary variable. Thus, we propose 
that drug sensitivity is better described as a spectrum (AUC and m) 
than as a binary classification.

We next re-calculated and compared IC50 data only from drug/
cell line pairs determined to be sensitive in either CCLE or CGP by 
the SVM classifier (another requirement was the existence of a non- 
extrapolated IC50 value). We found good correlation between the two 
studies overall (Fig. 1e; ρ =​ 0.69, P <​ 0.0001). However, stratification 
by drug generally yields poor IC50 correlations (Fig. 1f). Thus, caution 
should be taken for inference of IC50 values for specific cell line/drug 
combinations from CCLE and CGP, despite consistency on the level of 
slope, area under the curve, and binary sensitivity classification. Haibe-
Kains et al.3 stratified IC50 by drug for sensitive and insensitive lines 
(IC50 values for insensitive lines are unreliable), which contributed to 
their conclusion of inconsistency.

We conclude that the drug dose–response data in CCLE and CGP are 
acceptably consistent for most cases. Furthermore, we made no attempts 
to remove potentially suspect dose–response data, but doing so in future 
efforts could further facilitate data usability. That the two studies are 
this consistent is quite remarkable, given the different viability assays 
used, as well as inescapable confounding factors such as cell confluency, 
clonal variations, genomic drift, different drug suppliers/batches,  
laboratories/equipment and serum composition. This suggests that 
the measured genomic and gene expression parameters may provide a 
robust cellular context that dictates drug sensitivity.

Methods
For each drug/cell line pair found in both CCLE and CGP, we calculated the slope 
and AUC of each dose–response curve (percentage cell viability versus log10 drug 
dose) only in the shared dose range. These values were normalized to account 
for different dose ranges used by each drug. One CCLE point and one CGP 
point defined boundaries of the shared dose range to maximize data coverage. 
IC50 values were calculated as the drug concentration needed to reach 50% cell 
viability (using a fit to a sigmoid response model) if within the shared dose range  
(see Supplementary Methods). All scripts and data needed to reproduce the figures, 
including the MATLAB code, are provided in Supplementary Data 2.
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Extended Data Figure 1 | Examples of typical sensitive versus insensitive dose–response curves. This document was given to manual curators as 
example dose–response curves. These idealized data represent various dose–response curves one might encounter in CCLE and/or CGP and indicate 
how they should be classified.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 2 | Examples of what the manual curators received. This is one page, as an example, from the data given to manual curators, 
which they were instructed to rate as either sensitive or insensitive.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Safikhani et al. reply
replying to M. Bouhaddou et al. Nature 540, http://dx.doi.org/10.1038/nature20580 (2016)

In the accompanying Comment1, the authors make two main claims: 
(1) that viability metrics computed over the drug concentration range 
shared between datasets yield higher consistency than the same 
metrics computed over the full, often only partially overlapping, drug 
concentration range; and (2) that binary drug sensitivity classifica-
tion (insensitive versus sensitive) as determined by manual curators 
increases the consistency of pharmacological profiles between the 
Cancer Genome Project (CGP)2 and Cancer Cell Line Encyclopedia 
(CCLE)3. We appreciate the innovative approach followed by the 
authors, and our reanalysis confirms the marginal, but statistically 
significant, increase in consistency achieved through the use of viability 
metrics computed across a reduced but common range. However, our 
results indicate that manual classification of drug dose–response curves 
does not significantly increase the agreement between drug sensitivity  
calls compared to computational approaches. Notably, it is unclear 
whether the authors’ manual approach will improve reproducibility 
of the biomarker discovery process, as collapsing of complex curves 
into discrete categories may result in a substantial information loss. 
Here we provide specific responses to the main results reported by 
Bouhaddou et al.1

Similar to Pozdeyev et al.4 and the Comment by Mpindi et al.5, the 
authors investigated whether sensitivity metrics computed from the 
drug concentration range shared between CGP and CCLE yield higher 
consistency1. Using the authors’ code1, we were able to implement their 
slope (ms) and area under the curve (AUCs) metrics (in which subscript 
‘s’ denotes shared dose range) in our PharmacoGx platform6 with a 
minor improvement of the ms metric to prevent highly sensitive cell 
lines with flat drug dose–response curves to be classified as insensitive 
(see Supplementary Methods). We compared the AUC and m metrics 
computed from the full and shared drug concentration range for the 
pooled set of drug sensitivities. Our implementation of the drug dose–
response curve fitting and sensitivity computation further improved the 
authors’ results: initial correlation for ms (ρ =​ 0.52) and AUCs (ρ =​ 0.61) 
both increased to 0.67. We then tested whether the common viability 
metrics constituted significant improvement over computations on the 
full drug concentration range. We observed a small but statistically 
significant improvement for both the ms and AUCs metrics (test of 
difference in correlations, P <​ 0.01; Supplementary Fig. 1). Stratifying 
our analysis per drug, we observed that the improvement in consistency, 
although significant, was marginal, with the exception of nilotinib 
(Supplementary Fig. 2). However, most of the drugs still yielded poor 
consistency (ρ <​ 0.5), which is in line with both our initial report7 and 
our more recent reanalysis8.

The authors investigated discretization of their continuous metrics 
to test whether binary classification would yield higher consistency, as 
estimated by the overall percentage agreement in drug sensitivity calls. 
However, such a statistic does not take into account the agreement 
that would be expected purely by chance owing to the large propor-
tion of cell lines being insensitive to the tested drugs. The Matthews 
correlation coefficient (MCC)9 addresses this issue. It is a balanced 
measure that can be used when the classes are of different sizes, and its 
significance can be computed using the χ2 statistic for binary classes 
(Supplementary Methods). We illustrate the case of four drugs with 
different patterns of consistency in Supplementary Fig. 3. Although all 
four drugs yield an overall agreement of greater than 92%, they exhibit 
a wide range of MCC values. Nilotinib is a good example of a consistent 
drug phenotype across cell lines (MCC =​ 0.86; Supplementary Fig. 3a). 

PLX4720 yields moderate consistency (MCC =​ 0.68; Supplementary 
Fig. 3b). AZD0530 and erlotinib show only poor consistency 
(MCC =​ 0.42 and −​0.05, respectively; Supplementary Fig. 3c, d). These 
examples support MCC as an appropriate statistic to discriminate 
between highly consistent drug sensitivity calls and those with poor 
concordance. We therefore used the MCC to compare different  
classification schemes, including those proposed by the authors.

Recognizing the difficulty of summarizing drug dose–response 
curves computationally, Bouhaddou et al.1 used an unconventional 
approach to increase the consistency of drug sensitivity calls: they 
gathered a team of eight curators and asked them to classify each drug 
dose–response curve as either sensitive or insensitive. The authors 
report a Cohen’s kappa (κ) calue of 0.53, which is in line with our 
estimated MCC value of 0.53 (Supplementary Fig. 4). The authors 
qualified their manual classification as a high and statistically signifi-
cant consistency. We disagree with the authors’ claim1 that their results 
provide evidence for high consistency. We refer them to the standards 
for strength of agreement for k defined previously10, which would only 
classify observed consistency as moderate. More importantly, when 
classifications are stratified by drug, we do not observe a significant 
improvement of manual curation over the computational classifications 
based on AUCs and ms values (P >​ 0.12, Wilcoxon signed rank test; 
Supplementary Fig. 5). Consistent with our previous report, 10 out of 
15 drugs (66.7%) yielded poor consistency (MCC <​ 0.5).

By pooling drug sensitivity data across drugs, the authors noticed a 
good quantitative agreement between the two studies, with estimated 
Pearson correlation coefficients (ρ) of 0.52 and 0.61 for AUCs and  
ms values, respectively1; our improved implementation of their method 
increased the correlation to 0.67. Nevertheless, we disagree that this 
level of correlation constitutes evidence for good agreement, and define 
it as only moderate consistency based on the interpretation scale of 
our initial study7. More importantly, the common viability metrics 
only marginally improved consistency at the level of individual drugs 
(except for nilotinib), with most of the drug yielding inconsistent drug 
sensitivity values (ρ <​ 0.5; Supplementary Fig. 2). The authors made 
a similar observation1 in their figure 1f, undermining their claim of 
drug response consistency in CGP and CCLE. Moreover, the main 
goal of CGP and CCLE consisted of finding new associations between 
molecular features and sensitivity to specific drugs2,3. Since biomarkers 
are to be found for each drug separately, it is vital that pharmacological 
profiles are highly consistent at the level of individual drugs and not 
merely when averaged across a larger dataset.

In conclusion, our re-analysis of the new AUCs and ms metrics 
described by Bouhaddou et al.1 showed that they represent a statistically 
significant improvement over the published drug sensitivity values, 
but the increase in consistency is only marginal for the vast majority 
of the drugs tested both in CCLE and CGP. Furthermore, manual 
classification of the drug dose–response curves does not appear to 
substantially improve the consistency of binary sensitivity calls over 
computational approaches and is not a scalable method. However, 
the authors1 showed that manually classified drug dose–response 
curves could be used as a benchmark to train nonlinear computa-
tional predictors that could take into account the peculiar features 
of each individual dataset. Although there is no evidence that the 
authors’ approaches1 improve reproducibility of biomarker discovery 
for individual drugs, their work may open a new avenue of research in 
pharmacogenomics. Manual curation and further exploration of new 
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large datasets such as CTRPv2 (ref. 11) and GDSC1000 (ref. 12)— 
containing approximately 395,000 and 225,000 individual curves, 
respectively—will present major challenges, but the investment in these 
large pharmacogenomic warrants such efforts.

Author A. C. Jin was a student in A.H.B.’s laboratory and left shortly 
after publication of the initial study, and did not participate in in 
the writing of this Reply. Authors Z.S., P.S. and M.F. developed the 
PharmacoGx software package, which enabled the analyses presented 
here; A.G. helped with the comparison of the different drug sensitivity 
metrics, and participated in the interpretation of the results and writing 
of this Reply.

Methods
The methods are described in detail in the Supplementary Information. The code 
and associated files required to reproduce this analysis are publicly available on the 
cdrug-rebuttals GitHub repository (https://github.com/bhklab/cdrug-rebuttals). 
The procedure to set up the software environment and run our analysis pipeline is 
provided in the Supplementary Information. This work complies with the guide-
lines proposed previously13 in terms of code availability and replicability of results.
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