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Abstract—We propose a method for discriminating among
competing models for biological systems. Our approach is based
on learning temporal logic formulas from data obtained by
simulating the models. We apply this method to find dynamic
features of epidermal growth factor (EGF) - induced extracellular
regulated kinase (ERK) activation that are strictly unique to
positive vs. negative feedback models. We first search for a
temporal logic formula from a training set that can eliminate
ERK dynamics observed with both models and then identify the
ERK dynamics that are unique to each model. The obtained
formulas are tested with a validation sample set and the decision
rates and classification rates are estimated using the Chernoff
bound. The results can be used in guiding and optimizing the
design of experiments for model discrimination.

I. INTRODUCTION

Mathematical models can be used to generate hypotheses
that can guide experiments of biological systems. How to select
better models and check which model is more representative
of the real biological systems has always been a challenge.
This subject in modeling is often called model discrimination
[11, [21, [3], [4], [5], [6], [7].

There is rich literature on designing methods for model
discrimination. Most of the methods are based on statistical
analysis such as maximal likelihood and the main goal is to
design input such that the outputs of different models can
be more different [8]. As the models from systems biology
are usually nonlinear, for example arising from mass action
kinetics or enzyme kinetics, usually linearization is an essential
part in the input design for model discrimination [9], [10].

In recent years, temporal logics have been increasingly used
in expressing more complicated and precise statements that
often occur in real systems [11], [12], [13]. It is a set of
rules for representing and analyzing the temporal behavior of
physical and biological systems. The temporal logic that we
use is called Signal Temporal Logic (STL) [14]. STL formulae
are evaluated on time trajectories. For example, the time trajec-
tory x(t) = sin(t) satisfies the formula ¢y ) (z > 0), which
reads as “During the time interval of (0,7), x(t) is always
greater than 0.” STL can be used to express quantitative high
level features of a group of simulated time trajectories from
various models. Comparison of these features to those of the
experimentally generated trajectories allows us to determine
which model fits the system’s behavior better. Kong, et al.
have designed an inference algorithm that can automatically
derive temporal logic formulae that can classify trajectories in
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different sets directly from data [15]. We apply their algorithm
in model discrimination by discriminating among trajectories
generated by different competing mathematical models. Under
certain circumstances the algorithm can lead to misclassifica-
tion (which means certain trajectories are wrongly classified
by the formula), for example if some trajectories generated by
one model are the same as or very similar to some trajectories
generated by the other model. In this paper, we present a
new method that can largely reduce the misclassification rate
in discriminating between different trajectories generated by
different mathematic models. We first search for a temporal
logic formula that can eliminate the trajectories which are
the same or very similar for both models. Then we classify
only the remaining trajectories for both models with another
temporal logic formula.

This paper is structured as follows. Section II shows the
problem formulation. Section III shows the new approach.
Section IV describes the implementation on the ERK pathway.
Finally, some conclusions are presented in Section V.

II. PROBLEM FORMULATION

Assume we have two mathematical models, Model 1 and
Model 2, that we want to discriminate. In this work, both
models are assumed to be stochastic. For Models 1 and 2,
we have probability spaces (£2;, F;, P;)i=1,2, respectively [16].
Each simulation of the models is considered as a map from €2;
to the space of trajectories. We assume that these spaces are not
explicitly specified. Rather, we assume that we can generate
sample trajectories that are mapped from independent samples
from these probability spaces.

The problem that we consider in this paper is to find an
STL formula ¢ that separates trajectories from Models 1 and
2. That is, ¢ is satisfied by (trajectories from) Model 1 with
high probability, and violated by (trajectories from) Model 2
with high probability. Here, we assume that the subsets of €);
corresponding to the satisfaction/violation of the STL formula
that we consider are measurable in F;.

We seek to solve this problem by working with sample
trajectories generated from both models. That is, we seek to
solve the following problem.

Problem 1. We denote Setl; and Set2; as two training sets
of trajectories generated by Model 1 and Model 2 (generated
stochastically by sampling initial conditions or modeling pa-
rameters, etc.). Find a temporal logic formula to discriminate
trajectories in Setl; and Set2;.

We denote the L., norm of a trajectory s as |[|s||, =

sup ||s(t)]|. Note that some trajectories in Setl; may be
0<t<T
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the same as or very similar to some trajectories in Set2;, i.e.
there exist subsets Subl; C Setl; and Sub2; C Set2; defined
as below:

Subly & {s; € Setl, | 3sy € Set2, |51 — 52
Sub2; £ {so € Set2; | Is1 € Setly, ||s1 — sal|

<e} (1
< e}

~

where € is a small positive number.

ITII. SOLUTION
A. Temporal Logic Inference

Using the inference algorithm in [15], we search for the
temporal logic formula ¢ that is best satisfied by the trajec-
tories in Setl; and violated by the trajectories in Set2;. The
temporal logic formula ¢ has the form ¢ = (A = B) with A
being the cause and B being the effect formula.

If some trajectories in Set1; are the same as or very similar
to some trajectories in Set2; (i.e. Subl; and Sub2; exist),
then the algorithm would give us a temporal logic formula ¢
with positive misclassification rate. There are some “mirror”
trajectories in the other set that are not misclassified, but are
the same as or very similar to the misclassified trajectories. It
can be seen from Fig. 1 that the sets Subl; and Sub2; are the
reason for the misclassified trajectories.

In order to better discriminate the two models, we propose a
modified method that can largely reduce the misclassification
rate. We intend to derive the temporal logic formula ¢’ of

the form ¢’ = (A4’ 2 p ) where the newly defined logical

symbol “ 2 7 is different from the “implication” symbol
“ = 7 and the new truth table is shown in Tab. I. Unlike
formula A, formula A’ serves an entirely different function:
it is designed as a criterion to determine the decidability of
the discrimination. We denote Subl, = Setl; \ Subl; and
Sub2, = Set2; \ Sub2; as the subsets of trajectories in
Setl; and Set2; that are not similar and should be separated
completely. (as shown in Fig. 1).

TABLE L TRUTH TABLE OF A’ 3 B’
A B | ABP
T T T
T F F
F T Undecidable
F F Undecidable

We thus can run the algorithm in [15] to search for temporal
logic formula A’ that is best satisfied by trajectories in Subl}U
Sub2; and violated by trajectories in Subl; U Sub2;.

After that, we run the algorithm to search for temporal logic
B’ that is best satisfied by trajectories in Subl} and violated
by trajectories in Sub2}. In this way, the two sets Subl} and
Sub2; can be completely separated based on property B’.
Specifically, Subl; (which is generated by Model 1) satisfies
B’, and Sub2; (which is generated by Model 2) does not.

B. Temporal Logic Testing

We check the validity of the formula with the validation
sample set (the validation sample set is independent of the

“Mirror”

“ i ”
Misclassified ~ Mirror Misclassified trajectories
trajectories trajectories trajectories

‘// I Subl,l \/ N / {/I S'u,bel N N

) ( \ g /)
Subl) h Sub2),
Setl; Set2,

Fig. 1. Diagram of the different subsets of the training set.

training sample set). We denote the trajectories generated
stochastically by Model 1 and Model 2 in the validation sample
set as Setl, and Set2,. Similarly, we define Subl,, Sub2,
as below:

Subl, £ {s; € Setl, | 3sy € Set2,, ||s; — 52|l < €} )
Sub2, & {s5 € Set2, | 3s; € Setl,, ||s; — sall o, < €}
We denote Subl!, £ Setl, \ Subl, and Sub2! = Set2, \

Sub2,. We calculate the decision rate and classification rates
using the following formula:

Py = n(Subl’)/n(Setl,)
fi’dg = n(Sub2,))/n(Set2,) 3)
P,y = n(Subll))/n(Subll)
Py = n(Sub2!")/n(Sub2!)

where Pdl and Pdg are the decision rates for Setl, and
Set2, respectively (i.e. the percentage of trajectories that
can be definitely classified by the formula); P.; and P.o
are the classification rates for Setl, and Set2, respectively
(i.e. the percentage of trajectories that are rightly classified
by the formula); n(Setl,) and n(Set2,) denote the number
of trajectories in Setl, and Set2, respectively; n(Subll)
and n(Sub2!) denote the number of trajectories in set Subl/)
and Sub2! respectively (i.e. satisfying A”); n(Subll) denotes
the number of trajectories in set Subl! that satisfy B’ and
n(Sub2l)) denotes the number of trajectories in set Sub2! that
violate B’.

We use the following Chernoff bounds [16] to estimate the
expected probabilities for the decision rates and classification
rates for each model.

P{p>p+a} <e N/

4
Pip<p—a)<e NP2 “)
where p and p are the calculated probability in the valida-
tion sample set and the actual probability, respectively. The
precision of such assessment depends on the total number of
trajectories N, so a larger N would give a tighter bound for
the estimate.
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IV. IMPLEMENTATION

In this section, we apply the proposed approach to discrim-
inate two models in Systems Biology. We simulate the extra-
cellular signal-regulated kinase (ERK) responses to epidermal
growth factor (EGF) treatment. By changing the feedback
strength parameter (Fa), we create two different continuous-
time ordinary differential equation models with 9 variables:
Model 1 with positive feedback and Model 2 with negative
feedback. Positive feedback loops enforce all-or-nothing and
switch-like sharp dose responses typically corresponding to
cell fates, whereas negative feedback has typically smooth dose
responses associated with analog control biologically. Thus
distinguishing the feedback mode has mechanistic interpreta-
tions for the pathway biological function. The parameters of
the models are taken from a previous model of ERK/MAPK
signaling in [17]. These in turn were predominantly taken from
biochemical enzyme kinetic experimental studies. Specifically,
we used a flow cytometry-based phosphorylation assay (FCPA)
to determine the kinetics and dose response of ERK activation
by EGF in HEK293 cells. From each model, for certain EGF
doses, we simulate many time trajectories of activated (dually
phosphorylated) ppERK levels of individual “cells” (Fig. 2)
by sampling total protein levels from a gamma distribution for
initial conditions and then simulating with deterministic ODE
solvers according to the rate equations.

PPERK
12000
1000
800 -
600
400+
200

ppERK

GREAIY = i
1200 1800
t t/s

Fig. 2. Trajectories generated from Model 1 (left) and Model 2 (right) with
EGF dose of 0.1nM using 20000 trajectories generated from Model 1 and
20000 trajectories from Model 2.

We first use the algorithm in [15] to search for the temporal
logic formula that is best satisfied by trajectories in Model
1 and violated by trajectories in Model 2. We generate 50
trajectories from each model as the training sample set for the
STL infererence. We use z to denote the ppERK level and the
following formula can be obtained with 20% misclassification
rate (which means 20% of the trajectories of the two models
are wrongly classified by the formula).

¢ :(dOSC = 0.1)/\0[107110_029] ($ < 10013)

:>|:|[1700,1800] (SL’ > 52774) ©)

The formula reads as ”If dose = 0.InM and the ppERK

level is lower than 1.0013nM for at least one point in the time

period [10,110.029]s, then the ppERK level is always higher
than 52.774nM for the time period [1700,1800]s”.

As can be seen in Fig. 3, compared with Model 2, the

trajectories generated by Model 1 have a general trend of

maintaining higher ppERK levels after EGF stimulation. How-
ever, in both Models 1 and 2, there is a fraction of tra-
jectories with ppERK levels close to 0. This approximately
“overlapping” (we use double quote as they can be very
similar and not actually overlapped) part is the reason for
the 20% misclassification rate. Specifically, we find that all
misclassified trajectories belong to Subl; and their “mirror”
trajectories belong to Sub2;. We first find the trajectories in
Subl; and Sub2;. Subl; can be obtained by seeking out the
trajectories in Setl; that have at least one trajectory in Set2;
that is the same or very similar using the L., norm (we set
€ to be 1), and their “mirror” trajectories in Set2; are the
trajectories in Sub2;. With the modified method, we are able
to calculate the following formulae with 0% misclassification
rate. There are 30 trajectories in Swubl;, 20 trajectories in
Subly, 30 trajectories in Sub2j and 20 trajectories in Sub2;.
The calculation takes about 56 seconds on a laptop PC.

¢ =(A' 3 B
A" = (dose = 0.1)AD[282.9834,505.1082) (* > 3.5114)  (6)
B, = 0[900,1800] (I > 1186944)

The formula A’ reads as “the dose=0.1nM and the ppERK
level is always higher than 3.5114nM for the time period
[282.9834,505.1982]s”. The formula B’ reads as “the ppERK
level is higher than 118.6944nM for at least one point in the
time period [900,1800]s”.

Using the same approach, we can infer the following for-
mulae with different EGF doses:

A
¢y = (A3 = By)
A/2 = (dOSC = 0’5)A<>[10,642.2807] (:E > 319832) (7)
By = Qr1017.9337,1800) (z > 181.7557)

o5 = (45 2 By)
Aé = (dose = 1)/\0[10,712,8703] (.CL' > 1135725) (8)
B3 = Ojgoo,1216.9086) (€ > 173.4933)

¢, = (4, = BY)
A} = (dose = 5)A010,617.2002) (z > 0.0139) )
B = O1199.3912,1493.8374) (x > 130.494)

¢ = (45 5 By)
Ag = (dose = 10)/\0[10,900] (ZL' > 00509) (10)
Bé = D[1204.276,1605.0666] (33 > 165494)

We further test the validity of this formula in the validation
sample set of 20000 trajectories generated by the mathematical
models and the decision rates and classification rates for each
model calculated by (3) are shown in Tab. IIL.

Using the Chernoff bound in (4) we can calculate, for 99%
confidence level, the estimated decision rates and classification
rates for each model as shown in Tab. III. It can be seen that
for an EGF dose of 5nM, the overall performance is better with
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TABLE II. THE DECISION RATES AND CLASSIFICATION RATES IN THE
VALIDATION SAMPLE

dose(nM) Pa1 Pz Pe1 Pe.o
0.01 0% 0% 0% 0%
0.1 52.73% 51.48% 96.95% 96.84%
0.5 90.58% 87.37% 88.56% 94.87%
1 95.18% 90.49% 91.69% 96.82%
5 99.93% | 99.93% | 93.07% | 94.18%
10 99.98% 99.98% 89.51% 90.32%
TABLE III. THE ESTIMATED DECISION RATES AND CLASSIFICATION
RATES
dose(nM) Pa1 P2 Py Pea
0.01 0% 0% 0% 0%
0.1 >50.10% | > 48.85% | > 93.33% | > 93.18%
0.5 >8795% | > 8474% | > 85.80% | > 92.06%
1 >9255% | > 87.86% | > 89.00% | > 94.06%
5 >9730% | > 97.30% | > 90.44% | > 91.55%
10 > 97.35% > 97.35% > 86.88% > 87.69%

regards to the estimated decision rates and classification rates
for each model compared to that for the other doses. Based on
this, we can use ¢ to design the following experiment: Firstly
use the EGF dose of 5nM, observe whether the ppERK level is
higher than 0.0139nM for at least one point in the time period
[10,617.2902]s, if the answer is no, then it can not be decided
which model it is; if the answer is yes, then observe whether
the ppERK level is always higher than 130.494nM for the
time period [1199.3912,1493.8374]s. If the answer is yes, then
accept Model 1, otherwise accept Model 2. Of course, more
complex inference into subsequent experiments and model
discrimination is possible with the described approach.

V. CONCLUSION

In this paper, we use an inference algorithm to extract
the temporal logic properties of ERK responses to epidermal
growth factor stimulation and propose a new method for
model discrimination by searching for temporal logic formulas
from simulation trajectories. We define the decision rates and
classification rates of temporal logic formulas in model dis-
crimination. We test the obtained temporal logic formulas with
a validation sample set and provide guidelines for experiment
design based on the decision rates and classification rates
estimated using the Chernoff bound. The obtained formula
show the temporal logic properties of the various cell re-
sponses, which is useful in designing experiments for model
discrimination.
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