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Abstract Kinetic models of biochemical signaling networks are a mechanistic
description of pharmacodynamics, and thus are potentially well-poised to fill gaps
in the drug development pipeline by: (i) allowing putative drugs to be tested via
simulations for efficacy and safety before expensive experiments and failed clinical
trials; (ii) providing a framework for personalized and precision medicine that
incorporates genomic information into a prediction of drug action in an individual;
and (iii) interfacing with traditional pharmacokinetic models to yield computable
yet mechanistic simulations that can inform drug dosing and frequency. However,
biochemical signaling networks are currently incompletely understood on a basic
level and are extremely complex compared to traditional applications of kinetic
modeling. Herein, we describe current methods used to build such models and
highlight strengths and weaknesses of the various approaches, as well as identify
areas that need more research to drive the field towards influencing these important
potential applications.

Keywords Crosstalk � Input signal � Feedforward � Feedback � Perturbations �
Enhanced pharmacodynamic (ePD) models � Occam’s razor � Reaction rate laws �
Michaelis-Menten equations � Microdomains � Parameter values � Ordinary
differential equation (ODE) � Stoichiometries

Electronic supplementary material The online version of this article (doi:10.1007/978-3-319-
44534-2_6) contains supplementary material, which is available to authorized users.

M. Bouhaddou � M.R. Birtwistle (&)
Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount
Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA
e-mail: marc.birtwistle@mssm.edu

© American Association of Pharmaceutical Scientists 2016
D.E. Mager and H.H.C. Kimko (eds.), Systems Pharmacology and Pharmacodynamics,
AAPS Advances in the Pharmaceutical Sciences Series 23,
DOI 10.1007/978-3-319-44534-2_6

105

http://dx.doi.org/10.1007/978-3-319-44534-2_6
http://dx.doi.org/10.1007/978-3-319-44534-2_6


6.1 Introduction

Kinetic models are those that represent the dynamics of a system in response to
perturbation, and are almost ubiquitously quantitative. This chapter focuses on how
one builds a quantitative kinetic model to describe the coupled chemical reactions
that together dictate how cells respond dynamically to a perturbation, such as
treatment with a drug. These collections of coupled chemical reactions are often
called biochemical signaling networks, or signal transduction networks. The word
network should be stressed, because although the historic notion of linear signaling
pathways has allowed us to understand basic routes of biochemical signaling, it is
becoming clear that signaling pathways in cells rarely operate linearly in isolation,
but rather are highly interconnected with feedforward and feedback loops and
exhibit significant crosstalk (Kholodenko et al. 2010).

Why should one care about kinetic models of biochemical signaling networks?
They are useful, if not essential tools in understanding and predicting how per-
turbations to biochemical signaling networks influence cell behavior. The validity
of this assertion is not clear if one still views signaling in terms of linear pathways
without feedforward and feedback loops or crosstalk. However, when one embraces
these ubiquitous features of signaling systems, the importance of kinetic models as
a tool to predict quantitative signaling behavior becomes lucent. As a simple
example, consider the simple biochemical network shown in Fig. 6.1, where an
input signal S is controllable and activation of D leads to a cell fate. In this simple
yet common “incoherent feedforward loop” network, the input signal S leads to
activation of A and C, but A activates D while C represses D. What will the cell fate
be if S is increased? If the levels of C were high, then increasing S would decrease
D, and if they were low, the opposite. Further compounding this seemingly simple
question are the spatiotemporal dynamics of A and C activation. If A is localized
with D but C is not, then D would go up, but if C is localized with D and A is not,
the opposite. Moreover, if C affects D more quickly than does A, D would go down
then up, and if C affects D more slowly than does A, vice versa. Thus, even in this
idealized example, quantitative knowledge of network spatiotemporal dynamics is
needed to predict cell fate. Qualitative knowledge for maps such as those in Fig. 6.1
is currently abundant, but the quantitative knowledge needed to predict behavior in
response to perturbations is scarce. This quantitative predictability problem is
amplified by the overwhelming complexity of real biochemical networks, in which
a large number of species are interconnected by a multitude of feedforward and
feedback regulatory motifs. Kinetic models of biochemical signaling networks have
properties that are suitable for dealing with these types of problems.

This kind of quantitative understanding of signaling dynamics is at the heart of
much current signal transduction research. If one understands the relationship
between biochemical network behavior and cell fate, it becomes possible to answer
a related but critically important question: how can one manipulate a biochemical
network to control cell fate? The ability to answer this second question has
seemingly countless potential applications. For instance, understanding how to
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make stem cells migrate, differentiate, and proliferate as needed could potentially
lead to cures for several hitherto untreatable diseases, and understanding how to
perturb deregulated signaling networks in cancer cells such that they cease prolif-
eration and migration could lead to novel cancer treatments. Improving the effi-
ciency of the drug development pipeline is critical as the cost of drug development
rises while success rates fall (Birtwistle et al. 2013; Returns on R&D investments
continue to fall 2014), and the ability of kinetic models to predict the effects of
putative new drugs or drug combinations, both for efficacy and toxicity, can place a
meaningful computational layer into the pharmaceutical drug development pipeline
that can help prevent costly failed clinical trials (Schoeberl et al. 2009). Moreover,
if the model is grounded in biochemical mechanisms, as we advocate for in this
chapter, then adapting the model to different patients based on their particular
genomic characteristics may be straightforward. In this regard, kinetic models of
biochemical signaling networks have been referred to as enhanced pharmacody-
namic (ePD) models (Iyengar et al. 2012). The ability of ePD models to cleanly
interface with traditional pharmacokinetic models can also help inform drug dosing
and scheduling (Zhang et al. 2014). These potential applications poise kinetic
modeling of biochemical signaling pathways to have significant impact in the
developing disciplines of systems and personalized pharmacology.

6.2 Building Kinetic Models of Biochemical Signaling
Networks

Figure 6.2 illustrates the general process that one would follow to develop a kinetic
model of a biochemical signaling network. It begins with a question or problem-of-
interest, and ends with a validated model that describes the relevant system
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Fig. 6.1 A simple incoherent feedforward motif
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Fig. 6.2 An overall workflow for building kinetic models of biochemical signaling networks. The
various aspects of the process are described throughout this chapter in sequence. Box—process to
be carried out, trapezoid—input information or data, diamond—decision to be made
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behavior and answers the initial question in a meaningful way. This process is not
unique to the models we consider in this chapter but is instead rather general to
many types of modeling. Notably, it depicts an ideal situation; in practice typically
many of these steps are either not performed or do not follow rigorous protocols.
Models that are not developed via this ideal process nevertheless are often quite
useful and have had impact in systems biology research. Yet, applying all the steps
of this pipeline would certainly improve the final developed model and would help
to standardize the currently widely-varying protocols employed to develop these
models. Such protocol standardization would help to boost confidence in the fidelity
of this class of models, as well as increase model sharing and reuse. This is of
particular importance if the goal of one’s modeling efforts is to inform preclinical or
clinical pharmaceutical development in an industrial or clinical setting.

In what follows, we expand on each step of this process, surveying current
methods and approaches as well as illustrating with real examples when possible.
Also, although we give an inherent bias towards mammalian systems and methods,
as the focus of this chapter is pharmacology, many of the presented methods are
general and can be applied to a multitude of biological systems.

6.2.1 Identify the Question or Problem

The process begins by identifying the question or problem-of-interest. This step is
absolutely critical to embarking on a well-posed modeling exercise that is likely to
yield meaningful research results, and is analogous to starting a research project
with a well-founded and experimentally-testable hypothesis. The question should
(i) rely on or be enhanced by kinetic modeling for providing an answer and
(ii) provide focus for the scope and granularity of the model when choosing from
among the many alternatives to be discussed below.

Throughout this Chapter, we will illustrate some (but not all) of the methods
with a case study focused on the role of Kinase Suppressor of Ras 2 (KSR2) in
extracellularly-regulated kinase 1 (ERK1) and ERK2 signaling mediated by the
B-isoform of rapidly accelerated fibrosarcoma (B-Raf) (Brennan et al. 2011). The
ERK1/2 signaling pathway plays a central role in a variety of cellular processes,
including migration, differentiation, and death (Yoon and Seger 2006). B-Raf is
commonly mutated in a variety of human cancers. A well-documented B-Raf
mutation is V600E, which is frequent in melanoma and constitutively activates the
kinase activity of B-Raf, leading to inappropriate ERK1/2 activation and cell
proliferation, survival, and migration (Dankort et al. 2009). A targeted small
molecule inhibitor of only B-Raf V600E, but not wild-type B-Raf or C-Raf (ve-
murafenib) was recently developed with structure-based approaches, and has
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showed a remarkable 80 % response rate in melanoma patients with the V600E
mutation (although the tumor regression only lasted 2–18 months presumably due
to adaptive resistance) (Sondergaard et al. 2010; Das Thakur et al. 2013; Bollag
et al. 2010). However, not all Raf inhibitor drugs have worked out so well. Pan
small molecule inhibitors of Raf family proteins, such as GDC-0879 and PLX4720
that target mutated and non-mutated B-Raf as well as the C-Raf isoform, have been
developed but have seen relatively limited clinical success (Hatzivassiliou et al.
2010; Poulikakos et al. 2010). This may be due to the fact that, in some cases, these
inhibitors can actually have paradoxical activating effects on Raf-family proteins by
inducing their dimerization (Poulikakos et al. 2010) and depend on the mutational
status of the upstream Ras family proteins (Hatzivassiliou et al. 2010). A new and
potentially critical mechanism has been shown for how the scaffold protein KSR2
operates in the context of mediating B-Raf activation and signaling to ERK1/2
(Brennan et al. 2011), and it may be feasible to design drugs that disrupt KSR2’s
ability to activate B-Raf-mediated ERK1/2 signaling. What oncogenic mutations
might make a particular tumor sensitive and/or resistant to such a KSR2 drug? What
other drugs, such as Raf inhibitors, may synergize with a KSR2 drug? What affinity
must a KSR2 drug have to exert ERK1/2 pathway inhibition, and what are the most
effective mechanisms to target? A kinetic model of the ERK1/2 signaling pathway
incorporating these new KSR2 mechanisms may help answer such questions.

6.2.2 Define the System

Defining the system forms the foundation for the entire modeling process, yet it is
very difficult to systematize and embodies what many refer to as “the art of
modeling”. Many choices and assumptions must be made that are based more on
intuition rather than rigor and mathematics. Yet, one guiding principal that almost
universally holds true is that of Occam’s Razor, which suggests that when con-
fronted with many possibilities, one should choose the simplest that describes all
desired features. Thus, we prefer to start simple with relatively restrictive models,
and only expand the model to be more complex when warranted by inability to
describe experimental data relevant to the question-of-interest. At this stage it is
prudent to consider the experimental system as well (e.g., cell lines vs. animal
models; which lines or animals, etc.), although this could also be considered at the
experimental design phase.

6.2.2.1 Inputs and Outputs

The question-of-interest should inform a clear choice for the input(s) and output(s)
of the model. The input should be experimentally perturbable, the output should be

110 M. Bouhaddou and M.R. Birtwistle



experimentally observable, and ideally vice versa. For our example, we choose Ras
as the input and ERK1/2 as the output. Ras is a small G-protein that sits at the top of
the B-Raf-ERK1/2 signaling cascade. Activation of Ras leads to B-Raf and ERK1/2
activation. ERK1/2 activation is a key regulator of proliferation, and its aberrant
activation in cancer is often a driver of unregulated growth.

6.2.2.2 Connecting the Inputs and Outputs with a Kinetic Scheme

The kinetic scheme is a precise pictorial representation of the chemical transfor-
mations that are assumed to occur between the model inputs and outputs. It is the
foundation and a central part of the model. There have been some formalisms
proposed to depict kinetic schemes, such as those suggested by CellDesigner
(Kitano et al. 2005), but they have yet to be widely adopted. Nevertheless, there are
a few basic features that are widely understood (see Fig. 6.3 for examples):
(i) binding of one species to another to form a complex is depicted by two arrows
smoothly coming together into one arrow, and dissociation as the reverse; (ii) en-
zymatic transformation is depicted by a curved unidirectional arrow from substrate
to product, with a straight unidirectional arrow from the enzyme to the nadir of the
curved arrow; (iii) degradation is depicted by chemical transformation to the empty
set ∅; (iv) synthesis is depicted by chemical transformation from nothing. Of
course, there are many variations on this theme, but these generalities will help one
to understand many kinetic schemes.

Deciding on reactions to connect the inputs and outputs is again part of the art of
modeling. Moving backwards from the output to the input is usually a reasonable
method. How does my output get produced? What biochemical entities are needed
to do that? How does this mechanism move me one step closer to my input? By
repeatedly answering these questions, one can arrive at a list of species and reac-
tions that are likely important to connect the model inputs and outputs. It will also
suggest when “dead-ends” are present and thus suggest species and reactions that
may be culled.

We opt to build “mechanistic” models when possible, meaning that if an ele-
mentary reaction mechanism is known, then we prefer to include it in the model
explicitly. This is desirable as the model is grounded by its clear connection to real
biochemical entities and mechanisms, and as such is usually easier to compare to
experimental data than a model that is not mechanistic. Most importantly, a
mechanistic model can be quite adaptable to different cell systems or contexts
(Bouhaddou and Birtwistle 2014) because its parameters and species have explicit
biochemical meaning and can be changed by measurements in the new system. This
is in contrast to empirical models that may be very good at describing the behavior
of a particular system, but are not easily adaptable to other systems because the
parameters do not have biochemical meaning. Yet, more often than not in bio-
chemical signaling networks, uncertainty is abundant, and mechanisms are not
known. This necessitates semi-mechanistic or empirical approaches, at least for
connecting those species where mechanisms are not known. Approaches based on
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fuzzy logic, Bayesian inference, and quantitative logic gates have had success in
such endeavors (Morris et al. 2011; Kirouac and Onsum 2013; Sachs et al. 2005), as
well as those based on modular response analysis (Klinger et al. 2013) or similar
perturbation-centric methods (Molinelli et al. 2013). Moreover, the mechanistic
links between signaling kinetics and cell fate, such as apoptosis, are sometimes not
clear; in such cases regression based methods, such as partial least squares
regression, have been shown to work well (Miller-Jensen et al. 2007; Janes et al.
2005). Useful models will likely be a mix of mechanistic with empirical functions
when necessary.

Sometimes, explicitly modeling all known biochemical mechanisms is overly
burdensome or not relevant to the question of interest. For example, often times in
models of kinase signaling pathways, ATP is not explicitly modeled. Of course,
ATP is important for kinase signaling; yet, its concentration almost never changes
in the cell and its binding to enzyme is typically very fast and does not appreciably
influence the overall reaction kinetics. Thus, one must exercise some restraint to
balance the costs vs. the benefits of incorporating mechanistic detail. Without this
restraint, one ends up with an extremely large model that becomes computationally
impractical to apply the downstream modeling process steps. Thus, we strongly
prefer parsimony as a first assumption over complexity.

The initial kinetic scheme we have chosen to depict our KSR2/B-Raf model is
shown in Fig. 6.3. Note that we have also indicated reaction rate numbers and
species indices; this greatly facilitates model development and its understanding by
others. As stated above, we describe scheme development starting with the output
and work upstream. ERK1 and ERK2 are doubly phosphorylated and activated by
active MEK1 or MEK2; however, only MEK1 has been sufficiently studied to be
included in the model (Brennan et al. 2011). MEK1 is activated by double phos-
phorylation as well, and it is claimed that only MEK1, which is bound to the
KSR2-B-Raf complex, can be doubly phosphorylated by a different B-Raf molecule
(Brennan et al. 2011). We assume that active GTP-bound Ras serves to recruit these
MEK1-KSR2-B-Raf complexes (presumably through the Ras binding domain of
B-Raf) and catalytically active B-Raf dimers to the plasma membrane so that the
B-Raf dimers can phosphorylate and activate MEK1. We assume that KSR2,
MEK1, and B-Raf can bind in any order to one another, but that B-Raf is needed for
binding to RasGTP. As mentioned above, we choose Ras as our model input, which
can be in two states, the inactive GDP or active GTP bound state. The conversion of
RasGDP to RasGTP is mediated by guanine exchange factors, whose activity are
typically regulated by external factors such as mitogens. It is well established that
active, doubly phosphorylated ERK1/2 (ppERK1/2) enacts strong negative feed-
back upstream by directly phosphorylating and inactivating C-Raf, and possibly to
a lesser extent B-Raf (Sturm et al. 2010; Fritsche-Guenther et al. 2011; Pratilas et al.
2009). Another well-established mechanism of ERK1/2-mediated feedback, which
is thought to travel through p90 ribosomal S6 kinase (RSK), is dampening of Ras
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activation by inhibiting the GEFs (von Kriegsheim et al. 2009). Negative feedback
is important for dictating input/output responses and drug sensitivity/resistance, and
therefore we include them since one of the modeling goals is to investigate drug
sensitivity/resistance.

Inspection of all the various association and dissociation reactions presented in
Fig. 6.3 highlights that it is often difficult to allow for all combinations of bio-
chemical transformations in a rigorous manner (i.e., it is easy to leave some out by
mistake). Furthermore, consider how difficult it would be to incorporate C-Raf into
this model, which can heterodimerize with B-Raf and can also bind many of the
same targets as B-Raf. Yet, incorporating C-Raf would likely be important to our
question-of-interest, since it is the target of many current Raf drugs and influences
their effectiveness (Sullivan and Flaherty 2013; Heidorn et al. 2010). This “com-
binatorial complexity” arises when model species have multiple sites that can each
be in many states, and arises not only from complex binding scenarios (as described
here), but more commonly from multisite modification such as phosphorylation.
For example, the epidermal growth factor receptor has approximately 10 tyrosines
that can each be unphosphorylated, phosphorylated, or bound to various down-
stream adaptor proteins; accounting for all these combinations yields 310 possible
species. This is clearly infeasible to draw on a kinetic scheme (and code) (Birtwistle
2014). An innovative solution to building models that account for such combina-
torial complexity is “rule-based modeling” (Chylek et al. 2013; Sorokina et al.
2013). BioNetGen and its derivatives, such as NFsim, are the more commonly used
variants (Sneddon et al. 2011). Instead of specifying a detailed kinetic scheme of all
unique chemical species, one only lists the domains and states of each molecule and
a handful of reaction rules that describe interactions between these domains and
states, which the software then iterates over to generate all potential chemical
species. Although attractive-in-principle, rule-based approaches tend to generate
extremely large models (sometimes even of infinite size if there are ring-forming or
polymerization reactions), which practically limits their applicability and sometimes
necessitates assumptions to reduce model size so that they are computationally
feasible. As computational power grows and rule-based algorithms improve, such
approaches will become more attractive. Nevertheless, whether the kinetic scheme
is depicted with the traditional enumeration of unique chemical species or by
reaction rules, the modeling steps illustrated in Fig. 6.2 and discussed below still
generally apply.

6.2.2.3 System Properties

Whereas the kinetic scheme is a quite comprehensive summary of all the bio-
chemical species and reactions being considered, there are still several key
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properties of the system to specify beyond that. Below we list these properties and
describe rationale for their selection:

1. Single Cell or Cell Population Average: Are the experimental data to be gath-
ered on a single cell level, or from millions of cells combined into a single
measurement? Are the questions-of-interest relevant to behavior of individual
cells or a population of cells?

2. Spatial or Compartmental: Do possible diffusional effects or spatial gradients of
biochemical species play a role? Can various subcellular compartments be
viewed as effectively well-mixed? How many cellular compartments are
needed?

3. Stochastic or Deterministic: Are any molecular species present in low copy
number (*100), making stochastic effects potentially important? Is one inter-
ested in cell heterogeneity? Does gene expression noise affect the
question-of-interest?

4. Dynamic or Steady-State: Are cellular dynamics important for your
question-of-interest? Will the experimental data consist of time courses?

Determining these properties gives well-defined tasks and methods for later in the
model development process.

For our example, we choose (1) cell population average, as drug sensitivity and
resistance are typically evaluated in cell populations, (2) compartmental with one
whole cell compartment, as the kinetic scheme does not involve any transport or
subcellular organelles, (3) deterministic, as these components are not very lowly
expressed (see below Build Initial Model section), and we do not wish to explain
any cellular heterogeneity (although drug response heterogeneity may be interest-
ing), and (4) dynamic, because often ERK1/2 and/or drug dynamics can be
important for mediating biological effects, and there are dynamic data available to
help constrain the model behavior.

Unfortunately, there is not enough space in this chapter to describe how to build
spatial models of biochemical signaling networks; however, there are a number of
excellent reviews on the topic (Kholodenko 2006; Neves and Iyengar 2002), and
many pieces of the model building process do not depend on whether the model is
spatial or compartmental.

6.2.3 Build Initial Model(s)

Once the system is defined and the kinetic scheme is in hand, one can specify the
model equations and then simulate and adjust the model, if needed, based on
literature or pre-existing experimental data.
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6.2.3.1 Choosing Reaction Rate Laws

Each reaction in the kinetic scheme has a corresponding rate law, which describes
the rate at which that reaction proceeds in units of concentration per time. The type
of reaction will drive the choices for the mathematical form of the rate law. These
rate laws can be used directly for deterministic simulations, and with minimal effort
for stochastic simulations (by converting units to reaction propensities and molecule
numbers).

Association and dissociation reactions are often assumed to follow mass-action
kinetics, in which the reaction rate is proportional to the concentration of the
reactants. For example, v1 is an association reaction between MEK1 and KSR2 and
we assume the rate law to be v1 = k1[MEK1][KSR2], where k1 is a rate constant
(1/time/concentration) and [] denotes concentration. The corresponding dissociation
reaction is v2 = k2[MEK1-KSR2], where k2 is a rate constant (1/time). For sim-
plicity and organizational purposes, we prefer to match rate constant subscript
indices with those of the reaction.

Enzymatic reactions can be broken down into elementary steps of association,
catalysis, and dissociation, or a lumped rate law can be assumed. Michaelis-Menten
lumped rate laws are common and capture the saturating nature of enzymatic
reactions even though the basic assumptions that go into such rate laws may not
firmly hold in some scenarios to which they are applied (such assumptions are often
difficult to validate in vivo) (Chen et al. 2010). If competition or sequestration is
thought to be important, then full elementary reactions should be used, in which the
binding of enzyme and substrate are considered explicitly.

Many times we further reduce the Michaelis-Menten equations to effective linear
rate laws that on their surface look like mass action laws. This requires assumptions
of Michaelis constants being much greater than the substrate concentration, giving
an effective first-order rate constant of kcat/Km, where kcat is the enzyme catalytic
constant and Km is the Michaelis constant. However, often due to parameter
identifiability issues (see below), one usually cannot determine whether such
assumptions are valid or not, and therefore we opt to use Occam’s Razor and go
with the simpler linear rate laws unless there is experimental evidence that they are
too simplistic.

Other potential rate laws are many, depending on specific assumptions the
researcher would like to make about each reaction. They include, for example,
Hill-type equations for multi-step or unknown mechanisms, and also for tran-
scriptional regulation. Our choices for all the rate laws in our example cannot be
described here due to space constraints, but can be found in the MATLAB code for
the model contained in the Supplementary Material (SimulateKSRv1.m and
SimulateKSRv2.m).

One important consideration is that all of these reaction rate laws are predicated
upon the hypothesis that cellular compartments are “well-mixed”, meaning that the
species are uniformly distributed throughout a compartment. Clearly, in many
biological situations such an assumption is suspect. For example, the plasma
membrane is not a homogeneous compartment but rather contains microdomains
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where receptors are located and downstream signaling occurs. Yet, models based on
this well-mixed assumption over the past 40 years, from metabolism to signaling,
have been very successful at describing the biological behaviors of interest and
providing insight into their mechanisms and function. Nevertheless, one must be
aware of this underlying assumption of traditional reaction kinetics approaches, and
if there is reason to believe it is causing model-experiment mismatch, one can use
more complex agent-based or spatial kinetic Monte Carlo approaches (Collins et al.
2010; Costa et al. 2009). Alternatively, one can instead opt to use empirical
approaches in such situations, as described above.

6.2.3.2 Initial Parameter Value Choices

Although parameter estimation is an explicit and significant step later in the
modeling process, much can be done here at the initial model development stage to
determine parameter values. There is a rich literature describing in vitro studies on
enzyme kinetics for many enzymes of interest, as well as affinities of protein–
protein interactions. These should serve as initial parameter value estimates. Even if
a particular protein–protein interaction or enzyme was not explicitly studied, one
can infer a feasible range for the parameter based on experimental studies of
homologs or similar processes. Such primary experimental studies should be a first
resource for determining initial parameter values. However, it should be noted that
there is no guarantee that parameter values measured in an in vitro setting corre-
spond to a live cell situation; thus, caution must be taken to remember that these
values are only initial estimates, and may need to be refined.

Another source of parameter values is previously developed kinetic models.
These are not as trustworthy as values that have been directly determined experi-
mentally, because parametric identifiability of these types of models is largely not
guaranteed (see Parameter Estimation section below). Nevertheless, such values are
reasonable starting points when no other information is available.

Because many of the reactions are founded in mechanism, reasonable lower and
upper bounds can be posited based on thermodynamic and physical principles, such
as detailed balance and diffusion limit. Detailed balance specifies that the product of
equilibrium constants for a circular cycle of binding reactions that do not produce or
consume energy must equal one, and the diffusion limit specifies that no association
reaction can proceed faster than the two reactants can find each other. If one
assumes that a particular protein–protein association has the same equilibrium
constant no matter what the states of the proteins (e.g., bound to other proteins,
phosphorylated, etc.), then detailed balance will be satisfied. There is some spread
in the literature as to what the diffusion limit is, perhaps because of uncertainty in
how diffusion proceeds in the complex cellular environment as compared to a pure
solution, but it is typical to limit on rate constants at approximately 0.1 s−1 nM−1.
In our experience, association rate values are well described by values a few orders
of magnitude less than this (*0.001 s−1 nM−1). One will often find values of
dissociation constants or affinities in the literature; we prefer to hold the association
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constant at 0.001 s−1 nM−1 and then calculate the off rate constant, based on the
reasoning that affinity will more likely affect the lifetime of the complex (koff), rather
than the association rate constant (often determined by encounter rate set by dif-
fusion). If one finds that the association rate constant must be increased far past the
diffusion limit to describe the data well, a likely explanation is that the two com-
ponents are co-localized in a volume smaller than the compartment being consid-
ered. For example, the association of two signaling proteins recruited to the plasma
membrane will have a much higher apparent rate constant due to their
co-localization. Thus, such constraint-violating situations can be resolved with new
mechanistic hypotheses, and then the rate law can be adjusted by assuming a
volume of this new subcompartment and scaling the two reactant concentrations
accordingly.

Another major class of parameters to determine is initial species concentrations.
Cellular protein concentrations range from about 0.1 nM (*100 molecules/cell) on
the low end to about 1 lM (*106 molecules/cell) at the high end (based on a
2000 lm3 cell—8.3 � 10−4 nM � cell/molecules). A recent study has obtained
absolute quantification of many cellular protein concentrations (Schwanhausser
et al. 2011), and we routinely use this resource to obtain species concentration
estimates. We also used this resource to estimate the overall levels of the species in
Fig. 6.3 (see Supplementary Material), but KSR2 levels were not available so this is
something we must estimate by analyzing its effects on model behavior. However,
it is important to note that these estimates should be refined later by parameter
estimation or through direct experimentation, as protein concentrations vary widely
across cell types.

6.2.3.3 Deriving the Differential Equations

For a deterministic model, each species will have its own ordinary differential
equation (ODE) (or a partial differential equation if a spatial model is being
considered; stochastic models do not have differential equations but rather reactions
are fired probabilistically using rate laws derived from the deterministic case).
A large majority of kinetic models of biochemical signaling networks are based on
ODEs. Thus we describe in detail here the derivation of the ODEs (there are
numerous excellent reviews on these other topics for interested readers).

The ODE for each species is simply the sum over all reactions that produce or
consume that species, with all reactions multiplied by the stoichiometry of the
species in that reaction. Consuming stoichiometries are negative, whereas pro-
ducing stoichiometries are positive. The entire system of ODEs is succinctly rep-
resented in matrix-vector notation using the stoichiometric matrix S

dx
dt

¼ Sv ð6:1Þ
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here, x is an n-by-1 vector of species concentrations, v is an m-by-1 vector of
reaction rates, and S is an n-by-m matrix containing the stoichiometric coefficients,
with species corresponding to rows and reactions corresponding to columns. In
principal, one does not need to specify the stoichiometric matrix to derive the
differential equations, and can instead write out sums of the reaction rates for each
species. However, we strongly prefer to use this stoichiometric matrix approach to
deriving the differential equations for several reasons: (i) reaction stoichiometries
are stored in one place and it is much easier to ensure their correctness; (ii) calcu-
lating the differential equations requires only one line of code (with linear algebra
libraries); (iii) any errors will be confined to the stoichiometric matrix itself, which
is straightforward to troubleshoot, rather than possibly being contained in hard
coded sums of reaction rates in multiple places; (iv) there are a host of analyses that
provide model information based on analysis of the stoichiometric matrix alone
(e.g., conserved moieties (Vallabhajosyula et al. 2006)); (v) providing a stoichio-
metric matrix facilities combining, modifying, and sharing models. An example
stoichiometric matrix for our model is provided in the Supplementary Material
(KSRModelv2Stoich.csv).

When reactions transport species across compartments, or when two reactants
are localized to a compartment but the reactant concentrations are defined with
respect to different volumes, special care must be taken to ensure the ODEs are
correct. In the case of transport, the product stoichiometry should be the volume
ratio between the compartments. For example, if a species A is transported from the
cytoplasm to the nucleus, with rate v = kt[A]cyt, then the stoichiometric matrix entry
for this reaction for cytoplasmic A is −1, but the entry for nuclear A is the volume
ratio Vcyt/Vnuc, with the subscripts cyt and nuc referring to the cytoplasm and
nucleus. Alternatively, one can multiply the vector of reaction rate laws by their
respective volumes, to obtain a left-hand side that is in terms of molecules (or
moles) per time, rather than concentration. In the case of species localization, both
species concentrations must be rescaled to the volume of the reaction compartment.
A typical example is ligand-receptor binding. Ligand-receptor association occurs in
the extracellular space, but ligand concentration is defined in the extracellular
compartment and receptor concentration in the cellular compartment. In this case,
the receptor concentration in the ligand-receptor association rate law should be
multiplied by the factor Vc/Vec, with the subscripts ec and c denoting extracellular
and cellular compartments. This rescales the receptor concentration to the extra-
cellular compartment for this particular reaction (but not in the entire model).

6.2.3.4 Simulating the Model-Deterministic

At this point one will have an ODE model that describes the mechanistic rela-
tionships between the chosen inputs and outputs. To simulate this model, one first
needs to specify the initial conditions. In most scenarios this is a two-step process.
First, one sets all of the unmodified, unbound species equal to the total concen-
trations determined above, and all other concentrations to zero. Then, with the input
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level set to that corresponding to the system prior to experimental perturbation, the
model is integrated to its natural steady-state. This step is called “equilibration.”
Integration should be done with an algorithm designed for stiff systems, such as
ode15s in MATLAB. The values for all states after equilibration become the
initial conditions for a relevant simulation in response to a perturbation. Then, the
response of a system to the perturbation is simulated by integrating over the desired
time interval, starting from the equilibrated initial conditions.

Simulations with the initial model should be used to verify that the model does not
have errors and that it displays expected behavior. No species should have negative
concentrations and moiety conservation should be confirmed. It is typical to do a
preliminary study of the dynamics and dose response of the system, and compare it to
what might be expected. Almost always the model must be altered. We did this for
our KSR2 model with the following characteristics in mind: (i) ERK1/2 activation in
response to mitogens usually occurs over *5 min., and in the presence of strong
negative feedback with decline by *30 min.; (ii) there should be a smooth dose
response of RasGTP, active B-Raf (RasGTP bound), ppMEK1, and ppERK1/2 to
mitogen levels 60 min. post mitogen stimulus; (iii) most MEK1 and ERK1/2 should
be in the doubly phosphorylated form at high mitogen doses; (iv) there should be an
optimal KSR2 concentration for causing maximal ERK1/2 activation 60 min post
mitogen stimulus; (v) increasing negative feedback strength should smoothen the
dose response to make ppMEK1 and ppERK1/2 (at 60 min.) increase more gradually
in response to increased mitogen levels. Unfortunately, we cannot expand in detail
how we made specific modifications to meet these criteria here, but the model code
with comments before (file name with suffix ‘v1’) and after (‘v2’) modification is
given in the Supplementary Material (SimulateKSRv1.m and SimulateKSRv2.m).
Interested readers are encouraged to analyze the differences between the two, and
contact us with questions.

6.2.3.5 Simulating the Model-Stochastic

If the model is stochastic, then there are no ODEs to integrate, and reactions are
fired through random sampling approaches. If one is unsure whether the molecule
numbers of various species are low enough to warrant stochastic simulation, it is
prudent to compare deterministic to stochastic simulation results and analyze if
there are significant differences. Common stochastic simulation methods reviewed
(Golightly and Gillespie 2013) are predominantly based on the Gillespie algorithm
or variants thereof. A preferred exact algorithm is that of Gibson and Bruck (2000),
but this is usually computationally intensive and cannot be widely applied to larger
models, particularly for stiff systems as is common for biochemical signaling net-
works. The implicit tau-leaping algorithm (Cao et al. 2007) is the numerical
equivalent to ODE integrators for stiff systems, and although it is not exact, it
usually gives acceptable results by time-averaging the behavior of fast reactions.
There are also hybrid methods that divide the model into stochastic and deter-
ministic portions (Salis et al. 2006). Many software packages make many such
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algorithms readily available in standard code libraries or with graphical user
interfaces, such as StochKit and Cain.

Sometimes, even though system behavior on the single cell level is stochastic, all
the molecule numbers are large resulting in little variability in reaction rates with
traditional stochastic simulations. Such noise may be largely due to cell-to-cell
protein expression variability, which arises from the stochastic nature of gene
expression. One can take such noise into account without direct stochastic simu-
lations, or rather by sampling total protein concentrations from known distributions,
and then integrating the ODE model for many sets of these initial conditions
(*1000) (Birtwistle et al. 2012a; Gaudet et al. 2012). Although some have used the
log-normal distribution for such sampling, it predicts a scaling behavior between
mean protein concentrations and the variance of protein concentrations that is not
consistent with experimental observations (Birtwistle et al. 2012b). The gamma
distribution is a more appropriate choice that captures cell-to-cell variability in
protein expression over a wider range of conditions (Birtwistle et al. 2012b;
Shahrezaei and Swain 2008). Alternatively, knowledge of the transcription and
translation rates, as well as mRNA and protein degradation rates for each species in
a model, permits the simulation of burst-like transcription and translation events de
novo using algorithms that simulate stochastic processes such as the Gillespie
algorithm.

6.2.3.6 Annotating the Model

For others to understand and reuse the model, it is essential to provide carefully
documented code, record the assumptions and parameter values that were used, and
then upload them to model-sharing resources such as BioModels or convert them
into a universal format such as SBML as well as provide source code (e.g.,
MATLAB or C++ code) (Waltemath et al. 2011). There is much literature devoted
to these topics and we do not discuss them in detail, but it is nevertheless important
to emphasize this step. We mention it here, rather than at the end, because it is
typically easier to annotate while the model is being initially developed, rather than
at the end when many versions of the model have been created, and many of the
assumptions were made long ago (sometimes several years).

6.3 Experimental Design and Execution of Experiments

It can often take months, if not longer, to gather reliable experimental data for the
initial development of a kinetic model. Thus, one should aim to plan such exper-
iments at a very early stage in the model development process, perhaps as early as
the kinetic scheme is produced (see curved arrow in Fig. 6.2). Although some
experimental design methods depend on an initial model, some experiments can be
planned and completed prior to completion of an initial model.
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Experimental design for kinetic models of biochemical signaling networks
consists of answering two questions. What types of perturbations should I apply?
What should I measure, and when should I measure it for each perturbation? If a
biological system has not yet been chosen, this also needs to be addressed here
based on the question-of-interest and system definition above. Are cell lines suf-
ficient or do we need animal models? What lines are appropriate? We focus on cell
lines. Here, we briefly describe the types of perturbation and measurement methods
that are commonly used, with the goal of providing enough information for readers
to make an informed choice, although it is impossible to comprehensively list all
methods here. As an aid, we provide a summary in Table 6.1.

We note that although it is seldom done, we strongly advocate for directly
measuring the total absolute abundances of all model proteins in the experimental
system of interest. Without these measurements to constrain the magnitude of the
various species in the model and the initial conditions, it is generally difficult to
make relevant predictions of the system behavior.

Table 6.1 Selected experimental methods and their properties relevant to kinetic modeling

Method What it
measures

Single cell
or
population
measure

Live,
fixed, or
lysed
cells

Ability to
multiplex

Ability to
generate
time-course
data

Absolute or
relative
quantification

qRT-PCR RNA Both Lysed Medium Medium Relative

RNA-seq RNA Both Lysed High Low Absolute or
relative

FISH RNA or
DNA

Single cell Live or
fixed

Medium Low Relative

Protein
tagging

Protein Both Live or
fixed

Low High Relative

FRET Protein
interactions

Single cell Live or
fixed

Low High Relative

Western blot Protein Population Lysed Low-medium Medium Absolute or
relative

Flow
cytometry

Protein Both Live or
fixed

Low-medium Medium Relative

Luminex Protein Population Lysed Medium Medium Relative

Mass
spectrometry

Protein Population Lysed High Low Absolute or
relative

Mass
cytometry
(CyTOF)

Protein Both Fixed High Low Relative
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6.3.1 Types of Perturbations

The most straightforward way to perturb the system is to apply a defined and
time-invariant concentration (dose) of a compound. Such compounds can be
pharmacological (e.g., a small molecule kinase inhibitor), or biological (e.g., a
growth factor). While biological compounds are usually applied at the moment
defined as time point 0, pharmacological inhibitors are often applied to the system
prior to biological compound treatment, to ensure its uniform distribution in cells.
Standard pipette-based approaches are limited to simple perturbation time courses,
such as the time 0 step response or a pulse-chase where the original dose is washed
out and then replaced with a new dose. However, sophisticated pump-based per-
fusion chamber or microfluidics methods (Mettetal et al. 2008) and
optogenetic-based methods (Toettcher et al. 2011, 2013) can allow for complex
time-dependent perturbations, such as sine waves or increasing ramps.

The system can also be perturbed at the transcript level. One can transfect
(liposome-based methods) or infect (virus-based methods) genetic material into
cells. The genetic material (usually a DNA plasmid) can express a gene ectopically,
overexpress an endogenous gene, or downregulate a gene via RNA interference
(e.g., shRNA) in a transient setting. A negative selection mechanism is needed to
obtain cells that permanently exhibit the alteration. To do this, the plasmid also
usually encodes resistance to a particular drug, such as puromycin. However,
genome-editing methods, such as those involving CRISPR and TALEN (Ran et al.
2013; Reyon et al. 2012), are becoming more realistic.

Once a gene has been permanently integrated, it can be controlled using drugs
such as tetracycline (or more commonly its higher affinity analog doxycycline) so
long as the gene is engineered to be Tet responsive. Expression can be modulated in
a dose-dependent manner, permitting a level of control similar to that describable
by a kinetic model. Aside from such transcription rate control, one can use the small
molecule Shield1 to increase the half-life of proteins that contain a DD domain
(Banaszynski et al. 2006).

6.3.2 Types of Measurements-Transcripts

To obtain a quantitative measure of the mRNA expression levels, one can perform a
qRT-PCR, or quantitative reverse-transcription polymerase chain reaction. This
technique is useful if one is interested in a few transcripts in a cell population
setting, but sometimes is done on single cells (although it can be technically
challenging). The alternative to enumerating individual transcripts a priori is to
measure transcripts globally, using a technique such as RNA-seq. RNA-seq data
can provide absolute mRNA copy number information as long as internal controls
are included in the analysis. Although RNA-seq is most commonly performed on
cell populations, the ability to perform RNA-seq in single-cells is rapidly emerging
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(Islam et al. 2013). If one is unable obtain RNA-seq data, microarray is a com-
parable methodology though it possesses several drawbacks such as high back-
ground noise and the limitation of having to define target sequences of interest a
priori (Xu et al. 2013). Fluorescence in situ hybridization (FISH) is a technique one
can use to visualize a particular mRNA transcript via a fluorescently labeled nucleic
acid probe. FISH can lend insight into differences in gene expression across a
population of cells and has been used to study stochastic gene expression in
mammalian cells with success (Raj et al. 2006). Generally, one fixes and perme-
abilizes the cells prior to FISH, thus killing them; however, it is possible to perform
FISH in live cells with minimal perturbation (Simon et al. 2010). Highly multi-
plexed FISH methods are also becoming available (Lubeck and Cai 2012).

6.3.3 Types of Measurements-Proteins

One way to measure the levels (and/or spatial location) of a protein over time is to
“tag” it with a fluorescent protein, by cloning them together such that they are
transcribed as a fusion protein. This method could serve to monitor protein
expression levels in response to a stimulus, such as cFos levels following growth
factor-mediated ERK activation. Importantly, protein tagging can be used to
measure protein levels and/or localization in live cells over time. Another live-cell
technique involves genetically encoded probes based on Forster Resonance Energy
Transfer (FRET) (Miyawaki 2011). Such probes allow one to measure the
spatio-temporal dynamics of biochemical signaling activities. For example, the
EKAR-EV FRET probe responds to ERK1/2 activity by changing its FRET
(Komatsu et al. 2011), and the past decade has provided a wealth of these probes for
various biochemical activities one may be interested in.

To measure protein levels in a cell population, the western blot is the gold
standard. In this technique, an antibody is used to bind to and measure the amount
of a protein or protein state in whole cell lysate that has been separated by
molecular weight. As an example, one could measure the level of a phosphorylated
protein in response to increasing mitogen dose. Further, the technique can be
combined with immunoprecipitation to quantify levels of protein–protein interac-
tions. Although enhanced chemiluminescence is often used to quantify western blot
signals, there can be non-linearity in such measurements; therefore for quantitative
kinetic models, systems such as LI-COR are preferred which provide a linear
signal-response. Absolute quantification is seldom done but possible by including
known protein concentrations as internal controls. It should be noted that the
western blot has been miniaturized into a so-called “microwestern” which is
potentially useful for kinetic modeling applications, since it allows probing with
many antibodies over many perturbation conditions (dose/time points). A Luminex
assay allows multiplexing to a similar extent as microwesterns (Ciaccio et al. 2010).

Flow cytometry allows one to measure the relative level of proteins in a large
number of single cells at a single time point, capturing the distribution of protein
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levels found in a population of cells using fluorescently labeled antibodies. In
principal, modern flow cytometers can quantify up to 16 analytes, but in practice
this is quite difficult and 3–4 color imaging is more typical. A flow cytometer
coupled to a mass spec (CyTOF) potentially allows quantification of *40 analytes
in single cells (Bendall et al. 2011), but requires specialized equipment and
antibodies.

As previously stated, one must determine initial protein concentrations in order
to construct a kinetic model that is biologically meaningful. One way to gather
initial protein concentrations in the cells of interest is via a proteomics approach
using mass spectrometry (MS), which can globally quantify protein levels in a
population of cells. Advances in mass spectrometry have enabled the quantification
of proteins in terms of absolute copy numbers, easily convertible to units of
molecules/cell (Schwanhausser et al. 2011).

6.3.4 Formal Statistical Design of Experiments

With an initial model that is based on and reproduces to an acceptable level
available literature or preliminary experimental data, it is possible to implement a
formal statistical design of experiments (DoE) tailored to the goal of the modeling
exercise. DoE is a mature field, and many have demonstrated how it might be
applied to the types of biochemical signaling models we describe here (Bandara and
Meyer 2012; Banga and Balsa-Canto 2008). The specific approaches that have been
described depend on whether the goal is parameter estimation for one model, or
discrimination between many candidate models. Although such established DoE
methods have historically been successful in other fields, their original development
is largely grounded in application to relatively low dimensional linear models, with
only a handful of states and experimental decision variables. Kinetic models of
biochemical signaling networks, however, have many properties that in our opinion
preclude meaningful application of such approaches with current computational
technology:

1. They are almost ubiquitously highly non-linear. Thus, local linear approxima-
tions of the model are used to apply these traditional DoE methods, the validity
of which is often unclear.

2. They are typically high-dimensional (>10 states). Thus, the potential number of
states to measure that the DoE algorithm must choose from is often over-
whelmingly large.

3. There are many potential experimental perturbations. This causes a combina-
torial explosion of possibilities for these DoE methods that optimize over the
experimental decision variable space.

4. It is generally not yet known how to guarantee parametric identifiability (see
Parameter Estimation below). Thus, it is unlikely that these DoE methods would
produce a design that significantly enhances our ability to identify model
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parameters or discriminate between two models, as compared to a more prag-
matic approach.

5. The validity of the initial model structure and parameter values is unknown at
this point. Thus, it makes little practical sense to spend a significant amount of
experimental resources to implement an optimal experimental design based on
an initial model that is likely inadequate.

These major reasons are most likely why in practice, formal DoE methods are
typically not employed to develop kinetic models of biochemical signaling net-
works. This is not to say that such methods lack importance, but rather that much
research is needed to develop new DoE methods that are suited to the properties of
this class of models and fill the current void in the model development process.

6.3.5 Practical Design of Experiments

The more pragmatic yet common approach to experimental design is to use the
insight of expert biologists to answer the two basic questions needed for experi-
mental design. This can often be done only with a kinetic scheme and thus can be
done before the initial model is completed. At this initial stage of model devel-
opment, a broad experimental design that perturbs the system using the model
inputs and measures across “important” states is preferred. Typically, perturbations
consist of applying extracellular agonists or antagonists (e.g., a growth factor) to
cells that have been serum-starved overnight (to minimize confounding variables),
in the presence or absence of pharmacological or small molecule inhibitors of “key
pathways” in the model. What states are “important” and what pathways are “key”
is best informed by expert opinion or initial experimental data. Dose responses for
the extracellular agonists or antagonists give important information to constrain
model behavior and should be done if the resources are available. Logarithmic dose
spacing (e.g., base 10) between saturating and limit of detection levels is often most
informative. Which species to measure is also best informed by an experimental
biologist with expertise in that system, and of course is limited by available tech-
nologies and resources. The time point selection should also be informed by expert
opinion, and depends on how one defined the system, the question(s) of interest, the
limits of the chosen technology, and available resources.

Biochemical signaling models have been termed “sloppy” (Gutenkunst et al.
2007), which refers to the fact that many key system outputs are quite robust to
variations in many model parameters (discussed more in Parameter Estimation
below). This property may be why such a pragmatic approach to experimental
design often results in a successful modeling exercise, because sloppiness dictates
that many of the choices simply do not matter for the behavior of key system
outputs.
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6.3.6 Comparison of Experimental Data to Model
Simulations

In general an experimental measurement does not directly correspond to a particular
model species. For example, if one is measuring a kinase activity in live cells by
FRET, the resulting FRET measurement cannot be directly related to the kinase
activity in the model, because there is not a linear relationship between the two
(Birtwistle et al. 2011). As another example, if one measures the total amount of
cellular RasGTP by pull down and western blot, this would correspond to a sum
over several model states in Fig. 6.3. Moreover, the way in which the western blot
data are normalized can have a significant impact on the quality of the normalized
data (Degasperi et al. 2014). Thus, great care should be taken to ensure that the best
comparison between experimental data and model simulations is being employed,
and often requires mapping the model variables onto so-called “observable” vari-
ables with defined functions. This requires a thorough understanding of both the
computational model and the experimental data; thus close collaboration and
effective communication between wet and dry lab researchers is essential.

6.4 Parameter Estimation

With an initial model and experimental data in hand, the next task is to determine
whether the model is capable of describing the experimental data, and what range of
parameter values give good fit. This exercise is called parameter estimation or
“training.” Parameters include total protein abundances (if not directly measured)
and kinetic rate parameters in each rate equation. Although one will have reason-
able initial values for all these quantities, it is highly unlikely that the model will be
able to reproduce the new experimental data without modifying the parameter
values. This is expected since many of the initial parameter values will have come
from in vitro studies or from data collected in a different biological system.

Parameter estimation for kinetic models of biochemical signaling pathways is an
extremely challenging exercise for two main reasons. First, the model is
high-dimensional and nonlinear. Thus it is computationally expensive to explore
the parameter space extensively when searching for good-fitting parameter sets.
Second, it is not understood how to guarantee parametric identifiability for these
models, and even this general class of nonlinear chemical kinetic models. An
identifiable parameter is one whose value is well-constrained by the experimental
data, such that it is known with acceptable precision. A typical kinetic model of a
biochemical signaling pathway will not have identifiable parameters. This is quite
shocking and perhaps even disturbing to modelers from other disciplines, such as
pharmacokinetics and pharmacodynamics described in other chapters in this book.
Despite this ubiquitous parametric uncertainty, an emerging theme in this type of
modeling is that key temporal outputs are typically robust to large changes in most
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parameter values. This property seems to be general for this class of systems
biology models and is referred to as “sloppiness” (Gutenkunst et al. 2007). From a
biological and evolutionary perspective, this makes sense, because key dynamic
behavior should not be affected by common noise sources. From a modeling per-
spective, this to some extent mitigates the problem that unidentifiable parameters
cause, with respect to reproducing biologically relevant behavior. However, one
should still strive to ensure all rate constants and concentrations are within bio-
physically feasible ranges, such as not exceeding the diffusion limit, and are jus-
tified to do so because model parameters typically have a biophysical interpretation.
Nonetheless, we are still left with the problem that we cannot be certain that
unidentifiable parameters do not affect our conclusion. That is why downstream
model analyses must account for how parametric uncertainty affects predictions,
such as global sensitivity analysis methods (see Model Analysis).

The first step in parameter estimation is to define lower and upper bounds for the
unknown parameter values. As described above, these can typically be set through
hard biophysical or thermodynamic limits. Next, one must define an objective
function that represents goodness-of-fit. There are many options, including
log-likelihood and sum-of-squared errors between simulations and data, and the
particular choice depends on assumptions for the expected errors in the experi-
mental data (Raue et al. 2013). Regardless, it is essential to scale each quantity such
that error does not depend on units (variance scaling is common and often statis-
tically valid). Then, one must choose an algorithm that will vary the parameters
over the bounds to optimize the objective function. Local, deterministic
gradient-based optimization is inappropriate for this class of models as they are
nonlinear and of high dimension. Global optimization methods are a necessary
component of any choice. One simple global method is to repeatedly employ local
methods but from different initial parameter values judiciously chosen from across
the parameter space (e.g., with latin hypercube sampling), and in fact such methods
may be both accurate and efficient (Raue et al. 2013). However, the majority of
studies have had success using either the genetic algorithm (Nakakuki et al. 2010;
Schoeberl et al. 2002) or simulated annealing (Wang et al. 2009). Bayesian methods
have been applied in a few cases with success (Vyshemirsky and Girolami 2008;
Eydgahi et al. 2013), and such methods are very attractive since they rigorously
account for multi-dimensional parametric uncertainty, although at much higher
computational cost than other global methods. Lastly, the chosen algorithm should
be run many times over, due to the inherent sloppiness of these models and
therefore parameter uncertainty. This allows one to estimate the range of parameter
values that give rise to models with “acceptable” fit. We suggest obtaining at least
10 good fitting parameter sets; *100 would give a much better indicator of
parametric uncertainty but even 10 is sometimes difficult to obtain due to the
computational burden.

Most of these parameter estimation algorithms are well-suited to parallelization
and should be implemented on high performance computing resources. One
potentially promising new technology is graphical processing unit (GPU)-based
computation. A single GPU card can contain *3000 processors that run the same
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program (i.e., model) given different input values (i.e., parameter sets), which is
ideal for this parameter estimation task. A desktop workstation can house up to 4
such cards, giving *12,000 GPU processors in a single machine. However, robust
ODE solvers that operate in the specialized GPU environment (e.g.,
NVIDIA CUDA language) must first be developed for such an approach to be
implemented. Some attempts exist, such as cudasim which can take an SBML
model input and use the GPU to simulate it both stochastically or deterministically
(Zhou et al. 2011), or code libraries such as odeint. Any GPU-based solver must
be able to implement implicit solver methods that can tackle the stiffness that is
present in these types of models.

After parameter estimation, one must decide whether the model has acceptable
fit or not. This is commonly done by simply plotting the model simulations against
the experimental data, and looking for close match between the two. In addition,
one can analyze the distribution of residual errors (differences between simulations
and data) for evidence of bias (non-zero mean). If there is bias, then that suggests
that the model structure and/or parameter bounds must be changed. A clear indi-
cator that parameter bounds should be changed is if estimated parameter values are
constantly on or near the bound. It is desired to first try to expand parameter bounds
if it is likely to improve fits, before altering the model structure. How to alter the
model structure is highly dependent on the nature of the model-experiment mis-
match and needs to be analyzed on a case-by-case basis. Regardless, if the structure
needs refinement, one must return to defining the system to come up with new
hypotheses.

6.5 Model Discrimination

Model discrimination refers to determining which model among a set is most
appropriate given experimental observations. Usually, parameter estimation must
be done before model discrimination. Some have investigated model discrimination
in a formal way, using Bayesian methods to compute Bayes factors for each model
(Xu et al. 2010). More straightforward and computationally inexpensive methods
are simply considering the sum of squared residual errors for each model and
weighting it by the number of free parameters with the Akaike or Bayesian
Information Criterion. As mentioned briefly above, there are some statistical design
of experiments methods that are focused on model discrimination, but largely any
experiments that are tailored to determining which model among many is most
appropriate are designed in a pragmatic manner.
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6.6 Model Analysis and Prediction

After successfully completing parameter estimation, one is ready to analyze the
model to provide potential answers for the question-of-interest in the form of
experimentally testable hypotheses. The type of model analysis will differ
depending on the question-of-interest. For example, if nonlinear dynamical phe-
nomena such as bistability or oscillations are of interest (e.g., cell cycle or circadian
clock), then traditional bifurcation analysis techniques can be applied (Chickarmane
et al. 2005), although this can be difficult with the high dimensional models typical
of biochemical signaling pathways and need expert knowledge to reduce the
number of parameters one is considering.

One general type of model analysis that is almost universally useful is parameter
sensitivity analysis. This consists of varying parameter values and observing the
effect on outputs-of-interest. Sensitivity analysis, like parameter estimation meth-
ods, can be local or global. Local methods consider only a particular region of
parameter space, and are typically inappropriate because (i) the models are non-
linear and (ii) parameters are not identifiable and therefore their values are not
known precisely. Unfortunately, local methods include metabolic control analysis
which has been widely applied to understand steady-state phenomena in metabolic
networks (Kholodenko et al. 1994). Global methods consider an entire
multi-dimensional region of parameter space, and therefore can account for the
inherent parametric uncertainty present in these models. There are many global
sensitivity analysis methods available (reviewed in (Saltelli 2008)), and it is not yet
clear which may be best for these types of models. We have previously used a
rigorous yet straightforward global method called Sobol sensitivity analysis, which
quantitatively decomposes the total variance in outputs-of-interest into the contri-
butions by individual parameters and the interactions between parameters (Sobol
2001). A larger variance indicates a more important parameter and therefore
important mechanism. The method functions by evaluating model outputs for a
large number of different parameter sets, and, importantly, is capable of providing
error estimates on the sensitivity coefficients. Although a very large number of
model evaluations are needed to produce statistically significant results, the algo-
rithm is easily parallelizable. We were able to perform Sobol sensitivity analysis on
a model of the VEGFR pathway containing 77 parameters with relative computa-
tional ease (Zhang et al. 2014).

6.7 Model Validation

The model analysis stage will produce many predictions, and these predictions must
be sorted into those that can be experimentally tested and those that cannot, which,
like experimental design, requires close contact between the wet and dry labs.
Among those predictions that can be experimentally tested, typically the
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counter-intuitive or unexpected ones are the best to explore experimentally, in
addition of course to those that directly address the question-of-interest. Only a
small subset of all predictions can be experimentally addressed, so it is important to
carefully select those to further consider. Importantly, any experiments for model
validation must be independent from those used to develop and train the model.

After the new experiments are performed (or mined from the literature), one
must compare simulation predictions to the new data, and then interpret what it
means for the question-of-interest. Currently, a model is considered valid if it is able
to reproduce independent experimental data outside the scope of the original
training data set. If the model is not valid, typically it can still yield insight into the
question-of-interest, and may still be valuable in that regard. Such disagreement
prompts a new hypothesis and iteration back to the first step of the modeling
process. Yet, even if a model is validated in this way, it is not certainly universally
valid, and assuming that the model can predict many other quantities outside of its
training set would be grossly premature. Much more research must be done to
elucidate how a more unbiased approach to model validation can be designed, so
that confidence in model predictions can be quantified in a rigorous manner.

6.8 Conclusions

Building a kinetic model of a biochemical signaling network is a significant
investment of time and effort, and therefore one should have very clear goals and
expectations for what the eventual model will accomplish for the research
question-of-interest. Such kinetic models have many properties that can potentially
fill a significant gap in the drug development pipeline and inform personalized
medicine approaches. However, to reach this potential, much theoretical work must
be done to improve and standardize each step of the model building process shown
in Fig. 6.2. Any new methods must take special care to accommodate the properties
of biochemical signaling networks that hamper current methods, namely, the
complexity of these networks, their large scale, and inherent uncertainty.
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