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Abstract Systems pharmacology has evolved from a discipline that focuses on
drug action at the organ level to a discipline that combines traditional pharma-
cokinetic and pharmacodynamic modeling with recent systems biology approaches.
The integration of high-throughput data technologies with computational data
analysis and modeling offers new opportunities to overcome the one disease, one
target, one drug approach. Whole genomic or transcriptomic sequencing and pro-
teomics allow qualitative, and sometimes quantitative, snapshots of the cellular
state at any given condition (e.g., during disease or after drug treatment) that can be
the basis for the development of whole cell models to predict drug responses.
Networks of protein–protein interactions that were confirmed by experimental and
computational analysis of the structure of the interaction partners can be combined
with graph theory to identify modules regulating the cellular state. Dynamic
modeling and sensitivity analysis allow the identification of robust and fragile
nodes within these modules to identify putative drug targets for single or combi-
natorial drug treatment. Traditional pharmacokinetic and pharmacodynamic mod-
eling complements these approaches by predicting drug concentration and target
perturbation at the site of drug action. Such general systems pharmacology models
are a great leap forward towards the development of patient-specific drug response
models as a main component of precision medicine.
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4.1 Introduction

Over the past two decades, as our understanding of molecular and cellular char-
acteristics of biological organisms has grown, it has become clear that to understand
how components come together to form functional units, such as the actin
cytoskeleton for cell movement or the secretory machinery for hormone secretion,
requires us to study biological processes in a holistic manner. By holistic, we mean
that we keep track of both the components that make up the functional units and
also how they interact to give rise to function (Sabathie et al. 1975; Weng et al.
1999). This field of study is called systems biology. The development of high
throughput experimental technologies in genomics that allow us to sequence all the
genes in a genome simultaneously (Shendure and Lieberman Aiden 2012) and
measure genome-wide patterns of expression and gene modification (such as DNA
methylation) provide a comprehensive basis for understanding the genetic and
genomic underpinnings of cellular, tissue/organ, and organismal functions.
Similarly, development of proteomics using mass spectrometry (Picotti and
Aebersold 2012) has contributed to our knowledge of protein and protein state (e.g.,
phosphorylation) profiles within cells and tissues. The large data sets produced by
these omics technologies can seldom be intuitively understood and require statis-
tical and computational analyses for the data to be converted into knowledge.
Typically a variety of statistical tools, Bayesian models, as well as network analyses
based on graph theory are used to analyze large data sets. Bioinformatics is the field
that studies the organization and storage of large data sets and their subsequent
statistical and computational analysis. Although the pictures produced by such
analyses are reasonably comprehensive, they are often qualitative snapshots in time
and seldom or incompletely provide information about the dynamic or quantitative
capabilities of systems. Yet, critical for drug action and pharmacology approaches
is knowledge of precisely such characteristics—dose and timing. What is needed in
this regard is a different class of experiments that are not yet high-throughput, as
well as dynamical models based on differential equations to understand systems
dynamics. Irrespective of the approaches used, it should be appreciated that systems
biology uses an integrated approach wherein experiments and computational
models are combined to provide insight into how the systems are organized and
how this organization leads to function. The approach of integrating experiments
and computation is not new in biomedical sciences. It has been used for over
50 years in biochemistry, physiology, and pharmacology. In the past, however,
combinations of experiments and models dealt with functions at a single scale.
Typically biochemistry focused on the atomic and molecular scale, whereas
physiology and pharmacology focused on tissue/organ level functions. A distinctive
characteristic of current systems biology approaches is that it is multiscale—often
both in levels of organization as well as across time scales. Such analyses have the
potential to help us understand how molecules and interactions can give rise to
functions manifested at the cellular, tissue/organ, and organismal levels.
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4.2 Systems Pharmacology: A Network-Based View
of Drug Action

Traditionally, systems pharmacology has been used to describe studies of drug
action at the level of organ systems (Brunton et al. 2011). A set of two workshops at
the National Institutes of Health in 2008 and 2011 led to a white paper that provides
an expansive view of quantitative and systems pharmacology in current times
(Sorger et al. 2011). Currently, systems pharmacology in academia describes a
research area that combines both high- and low-throughput experimental approa-
ches of systems biology as well as a range of computational approaches including
network analyses for drug discovery and studying drug action (Berger and Iyengar
2009; Zhao and Iyengar 2012).

The concepts from graph theory, the branch of mathematics focused on the study
of networks, has been enormously useful in understanding regulatory features of
cell and tissues/organs. Components of cells interact both directly and indirectly,
and most components have multiple interactions. Networks capture these interac-
tions and provide frameworks for understanding of how regulation arises from the
interactions between cellular components. Feedback inhibition, which in network
parlance is called a negative feedback loop, has been long known in biochemistry
(Lehninger et al. 1992), but knowing how such loops can work in the context of
other regulatory features provides insight into the regulatory capability of the
system. The systematic description of regulatory units called network motifs (Milo
et al. 2002), and the ability to identify such motifs within large regulatory networks
(Wendell and Cianci 1992), provides mechanistic understanding of how the orga-
nization of systems contributes to regulatory capability. Since dysregulation is often
a key feature of the pathophysiological state, understanding physiological and
pathophysiological systems as networks is useful for both drug discovery and
studying drug action. These studies are generally based on molecular interactions
between the drug and its targets when these targets interact with and regulate other
cellular components or the network biology of drug action (Zhao and Iyengar
2012). These network-based approaches have been useful in understanding the
basis for cancer combination therapy (Boran and Iyengar 2010a, b), devising
treatment regimens for optimal efficacy (Boran and Iyengar 2010a), origins of drug
induced adverse events such as arrhythmias (Berger et al. 2010), and how
multi-drug combinations can mitigate serious adverse events (Zhao et al. 2013).
These successes indicate the value of network-based reasoning in the study of drug
action.

Systems pharmacology is often thought of as extension of pharmacokinetics and
pharmacodynamics that have been rooted in compartmental and physiologically
based pharmacokinetic models and biomarker-based pharmacodynamic models.
Each perspective—traditional and systems-based—serves a valuable role and rep-
resents the different facets of systems pharmacology that are schematically shown
in Fig. 4.1. In this overview we briefly describe the components of systems phar-
macology in the second decade of the 21st century that highlight an evolution in
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going from structural biology-based drug discovery to a more integrated mecha-
nistic pharmacokinetic and pharmacodynamic regime that accounts for genomic
and epigenomic control of drug action. For this we start with a brief description of
bioinformatics for drug discovery, drug action, and pharmacogenomics.

4.3 Systems Pharmacology: Relationships to Personalized
and Precision Medicine

For some diseases, genomic determinants are useful predictors of drug efficacy as
well as drug toxicity. Coding region SNPs have been very useful in identifying the
ability of cytochrome P450 variants to metabolize warfarin. This relationship has
allowed for the development of treatment regimens that enable the titrating of drug
dosage to obtain maximal efficacy in reducing clot formation while minimizing the
risk for internal bleeding (Aithal et al. 1999). The presence or absence of certain
cancer mutations may determine whether a certain receptor antagonist would be an
effective drug. For example, blockers of receptor tyrosine kinase activity are
unlikely to be effective if there are downstream mutations in Ras that would likely
change signal flux and drug efficacy. Of note, the Food and Drug Administration
recommends genetic testing to ascertain that K-Ras is not mutated before the
receptor tyrosine kinase inhibitor cetuximab is used for treatment of colorectal
cancer (De Roock et al. 2013). Tailoring the use of medication or adjusting its
dosage according to individual genetic makeup is called personalized medicine.
This terminology is fairly synonymous with the term pharmacogenomics, which is
described in a section below and is well known in clinical pharmacology. More
recently a new term called “precision medicine” has been introduced (Toward
Precision Medicine: Building a Knowledge Network for Biomedical Research and a
New Taxonomy of Disease 2011) that the National Academies have defined as
disease classification based on molecular characteristics. It is easy to see that the
terms personalized and precision medicine are conflated to imply that genetic
characteristics are the predominant characteristics to consider in disease classifi-
cation and drug therapy. Whereas genetic characteristics are very important, there is

Molecular Network Biology
Drug targets as nodes within regulatory
pathways & networks leading to phenotype

Pharmacogenomics
Drug ac on regula on by 
genomic determinants

Structural Biology
Structure-based considera on of  
drugs, drug targets and  drug ac on

Pharmacokine cs & Pharmacodynamics
Quan ta ve analysis of drug distribu on and 
drug ac on

Quan ta ve  &
Systems Pharmacology

Fig. 4.1 Quantitative and systems pharmacology is a multidisciplinary field. The different areas
of research that are integrated in quantitative and systems pharmacology are depicted as a flow
diagram
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likely to be more to precision medicine in fact, to make it precise. What seems to be
missing is a significant appreciation that the underlying principles of drug action are
quantitative dynamic processes embodied in pharmacokinetics and pharmacody-
namics. It is these disciplines that account for drug interactions—both pharma-
cokinetic and pharmacodynamic—and allow drug dosing schedules to be tailored to
patients. In addition, depending on the extent of the models, drug toxicity can be
predicted and used as a valuable guide to design therapeutic regimens. Although
these dynamic processes can be analyzed semi-empirically in pharmacokinetic and
pharmacodynamics studies, such analyses are not necessarily constrained by
molecular details, and with the advent of systems-based approaches and its merging
with pharmacokinetic/pharmacodynamic analyses, systems pharmacology has
gained traction. Systems pharmacology will likely grow in importance given the
interest and emphasis on precision medicine and the appeal to tailor therapy in the
context of genomic and epigenomic determinants, as well as regulatory networks.
Thus it is likely that systems pharmacology and precision medicine will develop in
a naturally coordinated manner in the future.

4.4 Bioinformatics for Systems Pharmacology

The ability to construct large networks that can be used to understand drug action
and drug discovery depends on the availability of large data sets. Among the largest
and best characterized ones are those that contain gene related information,
including gene variants that are related to drug action. These include the NCBI
databases on various types of genomic information. Among the oldest is GenBank,
which contains an annotated collection of all DNA sequences. Currently there are
19 databases under the heading DNA and RNA and another 17 databases under
Genes and Expression. There may be some overlapping information, but overall
these numbers provide a view of the vastness of the genomic data that is publicly
available. A few databases that are directly relevant to systems pharmacology are
listed in Table 4.1. In addition to genomic sequence information, there are also
databases for gene and protein interactions, along with ontologies that associate
genes with pathways and function. Gene Ontology is a widely used ontology
database. There also exist a number of drug related databases such as Connectivity
Map, DrugBank, PubChem and FAERS (Table 4.1). Each of these databases is
important for systems pharmacology as these enable the construction of different
types of networks to understand both drug action and to discover new drug targets
for complex diseases.
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Table 4.1 Representative list of databases used in systems pharmacology

Gene sequence and annotation
NCBI gene_info Contains gene related information such as taxonomy ids

(i.e., organism), ENSEMBL gene identifiers, Human
Protein Reference Database Identifiers (HPRD), official
gene symbols, gene ids, gene synonym names and full
gene names

NCBI gene2refseq Contains gene related information such as taxonomy ids,
gene ids, refSeq status, RNA nucleotide and protein
accession identifiers and official gene symbols

NCBI homoloGene Contains information about gene homologs between
different organisms

MGI vertebrate homology Contains information about gene homologs between
mouse, human, rat and other organisms

NCBI dbSNP Contains single nucleotide polymorphisms (SNPs),
insertions and deletions, microsatellites and
non-polymorphic variants

Gene or protein interactions
TRANSFAC PWM Associates transcription factors with their target genes

ChipX enrichment analysis
(ChEA) background database

Associates transcription factors with their target genes,
based on experimental results obtained from ChIP-chip
and ChIP-seq studies

Stitch Bork lab database of predicted protein-drug interactions
using various approaches http://stitch.embl.de/

Kinase enrichment analysis
(KEA) background database

Associates protein kinases with their protein
phosphorylation targets

Ontologies: association of genes with biological processes or pathways
Gene ontology (GO) Probably the most extensive ontology available,

categorizes its terms into three namespaces: biological
process, cellular component and molecular function

Kyoto encyclopedia of genes and
genomes (KEGG)

A smaller ontology with a focus on metabolic pathways.
KEGG also offers metabolic pathway maps on their
website

WikiPathways Further ontologies that associate genes with biological
pathwaysReactome pathway

Online Mendelian Inheritance in
Man (OMIM)

Associates human genes with genetic phenotypes

Mouse genome informatics
(MGI) mammalian phenotype

A large ontology that associates genes with mammalian
phenotypes

Drug related expression changes
Connectivity map (CMPA) Contains genome-wide transcriptional expression data

from human cells that have been treated with various
bioactive small molecules. It can be used to identify a
small molecule that up- or down-regulated a certain gene
set of interest

(continued)
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4.4.1 Pharmacogenomics

As mentioned above, pharmacogenomics connects drug action in an individual to
specific characteristics of the individual’s genome. Variations in the genome are
thought to account for a significant part of inter-individual variability in drug action,
and genomic characteristics are used for determining dosing regimens as well as
predictions for responsiveness to therapy. The best known example for prediction
of dosing regimens based on genomic variations is the use of warfarin to regulate
blood coagulation and thrombosis. Cytochrome P450 isoform CYP2C9 regulates
the metabolism of warfarin. CYP2C9 has two polymorphisms that reduce the level
of enzyme activity towards warfarin; consequently, increased warfarin concentra-
tions in the blood result in an increased risk of bleeding. So if a patient has these
CYP2C9 polymorphisms, the dosage of warfarin can be titrated to optimize therapy
while reducing the risk of bleeding. Testing for warfarin metabolism has become a
common approach to titrating warfarin dosage in clinical practice.

In treatment of cancers, genomic status, most often defined as presence or
absence of oncogenic mutations, can be used to predict responsiveness to certain
drugs. KIT oncogene mutations reduce the responsiveness of gastrointestinal stro-
mal tumors to imatinib (Aithal et al. 1999); k-RAS oncogene mutations in colorectal
cancer reduce responsiveness to cetuximab (De Roock et al. 2010); and epidermal
growth factor receptor mutations in non-small-cell lung cancer alter responsiveness
to gefitinib or erlotinib (Toward Precision Medicine: Building a Knowledge
Network for Biomedical Research and a New Taxonomy of Disease 2011). In most
of these cases, mechanisms underlying the genotype to drug response relationships
are not fully understood, and one of the major goals of pharmacology is to provide
mechanistic understanding of such multiscale relationships.

Table 4.1 (continued)

Drug related databases
Drug bank Contains detailed drug-related information, such as an

extensive list of drug target genes, drug-drug interactions,
drug metabolizing enzymes and drug indication

PubChem Database of small molecules and their activities in
different biological assays that were obtained by
high-throughput screening assays

ZINC Largest dataset of purchasable small molecules for virtual
screening http://zinc.docking.org/

ChEMBL Database with small molecules and their activities against
biological assays

FAERS FDA—adverse events
reporting system

Contains information about adverse events documented
by healthcare professionals during the treatment with a
drug or drug combinations
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4.4.2 Structural Reasoning in Systems Pharmacology

Structural biology has long been an area in which experimental data and compu-
tational modeling have been integrated to obtain biological knowledge. Going from
X-ray diffraction patterns to protein structures have always required building
models, and even more so in modern structure determination via X-ray crystal-
lography or NMR. Thus melding structural reasoning into systems pharmacology
approaches for drug discovery involves integrating models to scale across multiple
levels of organization. Several themes that form the basis for integrating models for
multiscale understanding are described here.

4.4.2.1 Protein Structure Informs Network Biology

Since biological networks are defined by the physical interactions between their
components, description of the precise molecular interactions between proteins,
nucleic acids, and small molecules is a prerequisite for understanding the dynamics
of lower resolution interaction networks and ultimately for designing drugs that
perturb these networks. For instance, a highly connected node in a protein–protein
interaction (PPI) network can be a protein that interacts with multiple partners
through the same surface region at different times in different pathways, or a protein
that interacts with multiple partners simultaneously using distinct surface regions
(Kim et al. 2006). Currently, there are over 100,000 experimentally determined
protein structures available in the Protein Data Bank (Rose et al. 2013); however,
only a small fraction of these structures correspond to protein complexes within the
interactome, making it difficult to map protein structure onto networks that can be
easily generated with high-throughput approaches. Multiple computational
approaches have been developed to predict the three-dimensional structures of
protein complexes in various network types, relying on homology modeling, in
which a target complex structure is based on experimentally determined structure of
a related protein or protein complex (Davis et al. 2006; Sali and Blundell 1993).
Mosca et al. developed Interactome3D, which is an automated homology modeling
pipeline and visualization tool, to map structural information onto any PPI dataset
provided by the user (Mosca et al. 2013). Homology modeling-based approaches
can also be used to annotate previously unknown physical interactions. PrePPI is a
Bayesian-based approach that combines protein structure information with
co-expression and functional similarity data to predict protein–protein interactions
(Zhang et al. 2012). PrePPI identified more protein–protein interactions in the yeast
proteome than those identified with high-throughput experimental approaches and
with higher accuracy, as well as covered a different fraction of the interactome
(Zhang et al. 2012).

In addition, many key cellular functions are executed by large complexes or
assemblies, such as the proteasome and ribosome. Experimental determination of
the atomic structures of such assemblies can be technically challenging and costly,
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and their modeling via homology is difficult because of limited structural coverage
of their components. Integrative modeling approaches such as the integrative
modeling platform (IMP), which generates three-dimensional structures or models
of large complexes using restraints that are derived from various low-resolution
data types (e.g., protein–protein interactions), can identify the domains and residues
that are involved in specific interactions (Russel et al. 2012). The yeast nuclear pore
complex structure, which includes 456 proteins, was modeled with IMP using
low-resolution data from diverse sources, such as affinity purification of protein
sub-complexes, sedimentation analysis, and electron microscopy (Alber et al.
2007).

4.4.2.2 Structural Considerations Guide Drug Discovery

Efficacy of a drug is strongly influenced by the extent that the target controls the
phenotype and the strength of binding between the drug and target(s). The former is
related to the system as a whole, and is typically analyzed by sensitivity analysis of
models that link the target to phenotype (Birtwistle et al. 2007; Schoeberl et al.
2009; Zhang et al. 2014). The latter is related to target ‘druggability’, that is,
particular structural features, such as binding pockets of suitable size, shape, and
electrostatic properties to accommodate drug-like molecules with optimal
bioavailability properties (e.g., the Lipinski rule-of-five (Lipinski et al. 2001)).
Hopkins and Groom introduced the term “druggable genome” and estimated that
about 10 % of the genes in the human genome are druggable, but only about half of
these genes are both druggable and relevant to disease (Hopkins and Groom 2002).
These druggable targets are primarily GPCRs, protein kinases, ion channels, and
membrane transporters (Hopkins and Groom 2002).

Druggability of a putative target is typically analyzed with protein structural
methods focused on physicochemical properties such as the presence of a surface
hydrophobic pocket (Cheng et al. 2007; Kozakov et al. 2011; Perot et al. 2010).
Recent efforts attempt to extend the druggable genome by targeting protein–protein
interactions (Wells and McClendon 2007), developing covalent probes (Singh et al.
2011), as well as by targeting allosteric or cryptic binding sites that cannot always
be observed in a static X-ray structure doi:10.1002/bip.22742 (Ung et al) (Ostrem
et al. 2013). For example, for many years the Ras protein has been considered
“undruggable”. Ostrem et al. (2013) used a tethering technique to screen com-
pounds against the cancer-associated Ras G12C variant. The X-ray structure of Ras
G12C bound to a novel tethered inhibitor revealed a newly exposed pocket, thus
providing a framework for developing more potent and bioavailable inhibitors.

Rational or structure-based drug discovery includes a wide range of approaches
aimed at developing small organic molecules that bind druggable pockets and rely
on concepts from medicinal chemistry and protein structure. This approach has
been used to successfully develop at least ten marketed drugs, including the anti-
hypertensive drug aliskiren (Rahuel et al. 2000), the antiviral telapravir (Lin et al.
2006), and the anticancer drug vemurafenib (Bollag et al. 2012). Computational
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approaches are particularly useful for identifying novel chemical scaffolds and for
optimizing lead molecules or known drugs against particular targets. For example,
in structure-based virtual screening (‘molecular docking’) a large compound library
is computationally screened, in which each small molecule is sampled in many
configurations and scored based on its complementarity to the target structure
(Shoichet 2004). This quick and inexpensive method—based on protein structure
rather than the chemical structure of known small molecule ligands—is a powerful
and validated tool for identifying novel chemical entities. For a protein target
without an experimentally determined structure, virtual screening can be performed
against homology models (Baker and Sali 2001; Jacobson and Sali 2004;
Schlessinger et al. 2013). Furthermore, characterizing various conformational states
of target proteins (e.g., with homology modeling or molecular dynamics simula-
tions) enables researchers to identify conformation-specific modulators, thereby
further increasing the pharmacological space (Durrant and McCammon 2013).

An emerging paradigm in modern drug discovery is one type of polypharma-
cology, in which a drug interacts with multiple targets with significant affinity to
obtain effective therapy (Keiser et al. 2009; Roth et al. 2004; Xie et al. 2011). This
is different from traditional drug discovery approaches, where a highly potent and
selective drug is optimized toward a single specific biological target.
Polypharmacology is observed in the treatment of various multigenic diseases such
as central nervous system disorders and cancer. For example, the cancer drug
sorafenib is a kinase inhibitor that binds to multiple targets such as BRAF, KDR
and p38a in their inactive conformations (Fig. 4.2). Because polypharmacological
modulators often have lower binding affinity to multiple targets rather than potently
binding one single target (Xie et al. 2012), previously “undruggable” sites, such as
those involving protein–protein interfaces, can also be targeted by such drugs. In
rational polypharmacology, a drug or a cocktail of drugs is/are designed against
multiple targets simultaneously, taking into account both drug and target structure.
Dar et al. combined medicinal chemistry, biochemical assays, and fly genetics to
systematically identify five distinct functional targets and ‘anti-targets’ for the
treatment of Ret-MEN2B cancers (Dar et al. 2012). Anti-targets are proteins that
when inhibited by drug, have undesirable effects such as increased toxicity or
reduced efficacy, and thus should be avoided. They then developed two novel
compounds that optimally interact with those targets/anti-targets to produce
strongly efficacious compounds now in clinical trials. It can readily be seen that
multiple targets could be part of a functional network, so we may in the future
design single or multiple drugs that exert their effects by modulating the behavior of
functional cellular networks rather than by modulating the activity of a single target.
Identification of such targets and anti-targets clearly interfaces tightly with
network-based thinking as described above.

Although protein structure-based approaches can be useful for rationalizing side
effect and efficacy of polypharmacological drugs (Geier et al. 2013; Schlessinger
et al. 2011), small molecule-based approaches are significantly more efficient in
capturing unintended ‘off-targets’ that predict adverse drug reactions. The chemical
similarity ensemble approach (SEA) relates proteins based on the chemical
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similarity among their ligands to build cross-target similarity networks that accu-
rately identify previously unknown protein-drug interactions (Keiser et al. 2009).

4.4.2.3 Genomic Variation Imposes Constraints on Networks Through
Protein and Drug Structure

Identifying which regions of a protein are responsible for different interactions is a
key step toward understanding how protein function and interactions will be
affected by genomic variation, including point mutations, deletions, and other
mutation types. Nonsynonymous single nucleotide polymorphism (nsSNP) is a
genetic variation that involves amino acid substitutions that can have a dramatic
effect on stability, hydrogen-bond network, conformational dynamics, interaction,
and many other physiologically important properties of proteins. Such properties
can be critical for interacting with their partners including proteins, nucleic acids,
and small molecule drugs (Wang and Moult 2001). For example, nsSNPs alter
kinetic parameters of signaling pathways (e.g., E542K, E545K and H1047R on
p110a for PI-3K catalytic activity). Protein structure reasoning can be applied to
design “personalized drugs” that interact with variants associated with specific

Fig. 4.2 Polypharmacology of the cancer drug sorafenib. a Phylogenetic tree of the human kinome
(illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com),
generated with Kinome Render (Chartier et al. 2013)), with sorafenib targets highlighted in red
circles. The binding site structure of various protein kinases is shown in surface representation.
b BRAF (PMID: 15035987) (Wan et al), c KDR (McTigue et al. 2012), and d p38a (Simard et al.
2009) are targets of sorafenib and their corresponding binding sites have negative electrostatic
potential (red); e ERK is not a target of sorafenib and its modeled binding site exhibits lower
negative electrostatic potential (blue) (PMID: 25420233; doi:10.1021/cb500696t) (Ung et al)
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diseases. Using X-ray crystallography and fragment-based screening, vemurafenib
was specifically designed to target the BRAF V600E mutant for treating metastatic
melanoma (Bollag et al. 2012).

Predicting how mutations affect protein structure, function, and druggability is
therefore critical for modern drug discovery and personalized medicine. Various
approaches aim at predicting mutation effect on functions such as destabilization of
the native structure or interference with the binding of other proteins or small
molecules (AlQuraishi et al. 2014; Kumar et al. 2009; Ramensky et al. 2002).
Examples include (i) machine learning-based methods that are trained on sequence
and biophysical features, such as solvent accessibility, flexibility, packing, and
conservation of residues (Bromberg and Rost 2007; Kumar et al. 2009), and
(ii) physics-based methods that compute the folding free energy to quantify the
magnitude of a mutational effect on stability (Schymkowitz et al. 2005). Notably,
deleterious point mutations can occur in binding interfaces and affect protein–
protein interactions and lead to network rewiring and new targets. Interestingly,
only a small fraction of the total residues in the binding interface contribute to most
of the energy that is associated with binding (Wells and McClendon 2007). These
interaction-stabilizing residues, which are often dubbed “hot spots”, can also be
predicted from structure using different approaches, such as computational alanine
scanning, which computes the free energy effect of mutation to alanine for each of
the binding interface residues, and other methods that consider evolutionary con-
servation (Kortemme and Baker 2002; Zhao et al. 2014). Analyzing the structural
consequences of mutations in the context of networks and pathways can provide a
mechanistic description for disease states and predict phenotypic effect. Kiel and
Serrano performed a systematic analysis of 956 RASopathy and cancer mutations
based on structures and energy predictions and showed that for the same gene, the
type of mutation determines the diseases state (Kiel and Serrano 2014). Energy
changes are higher for cancer mutations compared to RASopathy mutations, and
RASopathy mutations are likely to cause only minor pathway dysregulation. These
studies highlight how computational approaches allow the identification of rela-
tionships from structural variants to phenotypes to understand drug action. It is
expected as such approaches get integrated into the drug discovery process, more
personalized efficacious treatment for complex diseases such as type-2 diabetes,
cancer, and heart failure will be forthcoming.

4.5 Network Dynamics in Systems Pharmacology

Network representations allow us to describe how molecules within the cell are
connected through chemical reactions to one another. The organization within
networks is often called topology, and network topology allows one to trace how a
perturbation such as that evoked by a drug may be connected to important phe-
notypic outcomes such as cell fates or physiological responses. These networks can
be analyzed to detect hubs, highly connected molecules that may be effective drug
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targets. An ubiquitous network that regulates cell survival and proliferation is made
up by the MAP-kinase and PI-3 kinase pathways as regulated by growth factor
receptors (Fig. 4.3; von Kriegsheim et al. 2009). Such networks show topological
features such as feedback and feed-forward loops. As described above, when
information from network topology is combined with atomic structural information
of the biological molecules within these networks, one can further identify what
kinds of small molecule drugs may bind selectively to potential targets.
Furthermore, at least in some cases, one can infer how this binding may depend on
genomic variation that changes amino acid sequences, or understand how epige-
netic information dictates connections between a perturbation and outcome in a
context-dependent manner. This kind of reasoning can give tremendous insight into
generating hypotheses for pharmacological targeting of disease-related networks.
However there are limitations. One major limitation is the lack of consideration of
quantitative and dynamic relationships between network nodes. If a certain network
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Fig. 4.3 Schematic of EGF and NGF signaling to ERK and Akt in PC-12 cells. Adapted from
(von Kriegsheim et al. 2009). Epidermal growth factor (EGF) and nerve growth factor (NGF),
stimulate activation of the EGF receptor (EGFR) and the TrkA receptor (NGFR), respectively,
which can be internalized to different degrees (denoted by i). These active receptors lead to
recruitment of activators and inhibitors of the Ras and PI-3K pathways, including a spatial
regulator PEA-15 (denoted by 15). These pathways interact to form a complex network that
regulates activity of ERK and Akt kinases, which in turn regulate multiple phenotypic outputs,
depending on their temporal and spatial patterns. Multiple pharmacological compounds target
nodes in this network
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node is perturbed, will the perturbation be strong enough to propagate significantly
to affect cell fate, or in the case of drug action, alter pathophysiological behaviors?

4.5.1 Fragile and Robust Nodes

Network and structural information give insight into a traditional definition of
druggability by identifying a drug target and whether it is likely one can find a small
molecule to bind this target. Although these are necessary criteria for defining drug
targets, they are not sufficient. The question posed above evaluates druggability
using the criterion of fragility or robustness of the target; only the former attribute is
sought for a potential drug target. Fragility or robustness of a node is a
systems-level feature of the biological network that defines how strong or weak a
perturbation of that node affects an outcome of interest, and it is inherently quan-
titative. A fragile node mediates a large change in response to a small perturbation,
and a robust node the opposite. We posit that an effective drug needs not only to be
both structurally compatible with the target as is currently a usual focus of drug
development, but also that the target must be “fragile”, meaning that at therapeutic
concentrations of the drug, it binds the target with adequate selectivity and avidity
such that concentrations of the drug-target complex are sufficient for this pertur-
bation to be propagated with significant strength to the functional effector of the
network to evoke a therapeutic physiological response. In contrast, robust nodes
would not sufficiently alter their activity upon binding the drug and hence do not
induce change in response. Static, qualitative network models that are focused on
topology give us a limited ability to evaluate such fragility.

4.5.2 Sensitivity Analysis to Assess Fragility

A common way to assess such systems-level druggability depends on first casting
the biological network in terms of the elementary biochemical reactions that
comprise it. This usually gives rise to ordinary, partial, or stochastic differential
equation models that describe how these networks propagate signals and respond to
drugs over space and time in a dose-dependent manner. Importantly, such models
can give insight into this fragility or robustness question through a variety of
systems engineering-inspired approaches including sensitivity analysis (Csete and
Doyle 2002; Stelling et al. 2004; Kitano 2007). Sensitivity analysis is a collection
of many methods that share the basic property of perturbing quantities in a math-
ematical model of a system, and then observing the change in an output(s) of
interest. The magnitude of the sensitivity coefficient is related to fragility—the
larger the sensitivity the more fragile the target. However, not all types of sensitivity
analysis are appropriate for such biological networks. Because these networks are
usually incompletely understood and non-linear, global sensitivity analyses, which
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account for uncertainties in models and are not affected by non-linearities, are better
suited for making such inferences of fragility (Kim et al. 2010; Zhang et al. 2014),
and have even been used to make successful predictions for drug development,
which surprisingly involved a kinase dead receptor ErbB3 (Schoeberl et al. 2009,
2010).

Predicting fragility of a single node is useful for understanding diseases that can
be treated by a single drug or arise from defects in a single gene. However, many
non-communicable diseases that are progressive are multi-factorial and would
benefit from combination therapy. Additionally, an otherwise efficacious drug
might have unacceptable toxicity that can be mitigated by a second drug (Zhao et al.
2013). High-throughput screening technologies can quite effectively explore
responses of cells to single drugs and even dose responses of those drugs. When
one is considering drug combinations; however, the number of potential experi-
ments explodes into a number that is experimentally infeasible. Mathematical
models of the system of interest can be useful to providing leads on potentially
good drug combinations. Because they are based only on simulation, they are
almost always quicker to evaluate than a typical high-throughput screening assay,
as well as less expensive. In order for model analysis to yield useful predictions,
those predictions must be precise, meaning that the variance in the prediction of
drug response when model uncertainty is taken into account is relatively small.
Small, here, is defined as that level which allows a robust decision to be made as to
whether the drug combination is suitable for testing or not, and as such may be
quite different depending on the particular scenario. Most of these models have a
significant amount of uncertainty in them, both in the connections between bio-
logical molecules (network topology) and in the values of parameters that describe
these interactions (e.g., binding affinities). How much experimental data does one
need to build a model that makes precise and usable predictions for drug discovery
as well as drug action? A gold standard would be a dataset that gives so-called full
observability of the system, meaning that based on the measurements made, one can
uniquely calculate the values of every unique chemical species in the model.
However, one needn’t know every parameter in the model precisely to make useful
predictions of how model variables respond to perturbations; most if not all models
of biological signaling networks exhibit a property called sloppiness in which time
trajectories of key model variables are quite invariant to changes in most model
parameters (Gutenkunst et al. 2007a, b). From a biological perspective this is not
surprising, since this implies that key model variables are robust to most pertur-
bations, which should be the case due to evolutionary pressures for these networks
to function in the face of multiple forms of uncertainty and noise.

In any case, this understanding of sloppiness still does not answer the question of
data requirements for the model. Just how well do we need to know the parameter
values to make predictions of responses to single drugs and drug combinations that
are of sufficient precision? To gain insight into this question, we performed sim-
ulations with a model of a mitogen activated protein kinase cascade (MAPK)
(Huang and Ferrell 1996) (Fig. 4.4a) which controls many important cellular
functions from yeast to mammals (Kholodenko and Birtwistle 2009) and is thus the
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target of many drugs, particularly anti-cancer drugs. We simulated time-course data
(with added noise) from this system in response to an endogenous activation of the
pathway, and ensured that the considered data were both experimentally feasible
and gave full system observability. Next, different sets of kinetic parameters with
the same goodness of fit were estimated based on minimizing the error between
model predictions and simulated data using at least 25 different starting guesses to
evaluate parametric uncertainty. These fitted parameter sets were then used to

Mean 
5th percentile 
95th percentile 

MAPKKKK/Ras* 

MAPKKK MAPKKK*

MAPKK MAPKK-P MAPKK-PP

MAPK MAPK-P MAPK-PP

Raf inhibitor

MEK inhibitor

(a)

(b)

Fig. 4.4 Drug Action in the MAP—kinase pathway. Simulations with the Huang-Ferrell MAPK
model using MAPKKK (Raf) and MAPKK (MEK) inhibitors. a Simplified model schematic.
b Drug dosage responses computed as function of steady-state active MAPK/ERK (PPERK)
concentration after drug administration for Raf, MEK, and Raf and MEK combined inhibitions. At
least 25 drug dose response curves make up each plot, which correspond to different good fitting
parameter sets, and are summarized by their mean, 5th and 95th percentiles. The top panel is
simulations when the model is fit to simulated data that gives full system observability, and the
bottom panel corresponds to when just a single observable, the MAPK-MAPK phosphatase
complex, is removed from estimation. The first two columns are drug dosage responses for Raf and
MEK inhibitors alone, and the last two columns correspond to drug combinations
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predict MAPK (ERK) steady-state responses to a MAPKKK (Raf) drug, a MAPKK
(MEK) drug, and a combination of the two that produced a range of predictions for
drug responses. The gold standard dataset that allows full observability of this
system (15 different quantities measured over time), not surprisingly, yielded very
precise predictions of responses to single drugs and the drug combinations
(Fig. 4.4b). However, if a single observable is left out during the parameter esti-
mation, for example a somewhat non-obviously important one, such as the total
level of MAPK/MAPK phosphatase complex (which actually has small sensitivity),
single drug dose response predictions remain quite precise, whereas drug combi-
nation response predictions lose a significant amount of precision (Fig. 4.4b). This
result holds for several such leave-one-out simulation experiments. Thus, it seems
that making precise and therefore useful model-based predictions for drug combi-
nation responses requires a higher fidelity of parametric certainty, and therefore
more experimental data than is often considered. More research into this important
topic is needed if such models are to be useful in informing drug development and
choices for potentially effective drug combinations to test further in experimental
studies.

4.5.3 Sensitivity Analysis for Discovery of Targets
for Combination Therapy

The previous line of thought is based on evaluating a pre-existing hypothesis for a
drug combination; will the combination of two selected drugs be effective? How
can we use quantitative biological network models to suggest co-fragile nodes, and
therefore potential drug combinations a priori, before drugs are selected? This is an
area where global sensitivity analysis is useful. While there are a variety of methods
for global sensitivity analysis, we have had success in applying the method of Sobol
to such differential equation models of biological pathways (Zhang et al. 2014;
Sobol 2001; Saltelli 2008). One advantage of Sobol sensitivity analysis is that it
allows rigorous calculation of uncertainty on the sensitivity coefficients, and each
sensitivity coefficient is bounded between 0 and 1, with certain sums constrained to
add to unity. Thus, the absolute value of Sobol sensitivity coefficients is directly
meaningful and its statistical significance can be evaluated. Although Sobol sen-
sitivity analysis can require a significant number of model simulations, it is a
parallel problem, so utilizing high performance computing resources to implement
it is quite straightforward and easily scaled. Based on Sobol sensitivity analysis, one
can estimate both the impact of single parameters on an important output of interest
(1st or total order terms), and the simultaneous impact that two parameters have on
the output of interest (so-called 2nd order interaction terms). Single parameter
sensitivity coefficients can be useful to identify drug combinations when simula-
tions are performed with a first drug already selected and present in the model. The
2nd order parameter sensitivity coefficients that quantify interactions between
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parameters give direct insight into potentially useful drug combinations without
having to first consider a single drug.

Such simulations to suggest drug combinations of course do not give any insight
into dosing strategies or regimens. For these purposes one must couple biological
network dynamics that regulate drug action with pharmacokinetic models of the
drugs.

4.6 Networks to Pharmacodynamics

Most textbooks of biochemistry contain detailed diagrams of biochemical pro-
cesses; from glycolysis pathways to the TCA cycle to signaling pathways and
networks. These descriptions of interconnected biochemical reactions (networks)
provide a blueprint of normal physiology and also how they can be disrupted in
various diseases. The level of detail and complexity is impressive and each reaction
subset or single reactions that detail molecular conversions and enzyme kinetics can
be further scrutinized and elaborated. Although such description of biochemical
pathways and networks have existed for some time and are continually revised and
expanded, they (the most part) have had little influence on drug discovery or studies
of drug action. The modus operandi in drug discovery had been rational drug design
for specific targets. Whether that drug design process involved protein structure and
computer docking or more simply chemical modifications of lead compounds, the
focus was the drug-target interaction defined by Ki and IC50 values. Even as drug
discovery evolved into high-throughput screening techniques, the one drug-one
target approach has been commonly used. It is, with few exceptions, fair to say that
the worlds of detailed biochemistry of pathways and networks and the drug dis-
covery and development were silos on different farms.

Now the drug discovery enterprise is changing; its deconstruction is not so much
to do with an appreciation of the complexity of drug action but rather a realization
that drug development expenditures are escalating faster than the return on
investment; new blockbuster drugs are hard to find. Within this milieu of reanalysis,
new strategies are being considered; from a growing emphasis on moving modeling
and simulation, a standard practice in pharmaceutical companies, to more “radical”
systems-based approaches (Benson and van der Graaf 2014; Milligan et al. 2013;
Birtwistle et al. 2013). Such systems-based drug development is evolving from the
juxtaposition of an appreciation of complex drug action and the revolution of
bioinformatics heralded by the technological advances in genomics, including
broad-based microarrays and next generation sequencing. The mindset that drug
action is complex—not one drug-one target—is a natural evolution that also
includes drug toxicity, and now, terms like “off-targets” and “repurposing” are
common and have spawned new industries (Hurle et al. 2013; McCarthy et al.
2013). Informatics serves many functions from identifying prognostic risk factors
such as individual genes and their variants, to gene sets or signatures as biomarkers
for disease progression, to serving as a template for personalized medicine. It is the
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latter use that may impact preclinical drug discovery and development with a
central question, “which patients will benefit from our drug”? Superimposing
complex drug action and a gene regulatory network on a single canvas paints a new
picture that may be referred to as systems pharmacology. The gene network can be
used to develop protein networks, or these protein networks can be developed
independently using proteomic tools. A systems pharmacological view of drug
action, whether for therapeutic efficacy or toxicity, can be cast as a subnetwork of
drug targets within a larger regulatory network comprised of cell signaling path-
ways (Fig. 4.3). Pharmacodynamics (Levy 1966) predates this systems view and
had more or less adopted the early view of one drug:one target where the measured
response was either the direct drug target—target engagement—or a tell-tale
downstream biomarker, for example phosphorylated Erk is often a measured bio-
marker for EGFR inhibitors (Wang et al. 2008). Not dissimilar to the black box
compartmental modeling that is done in pharmacokinetics, pharmacodynamic
models have also largely been a black box, the input is a drug concentration and the
output of the box a measured response; mostly relative to control or pre-dose. Of
course the limitation of black box pharmacodynamics is that without a mechanistic
framework, patient responses may not correlate to the black box output, and even if
they do, there are sufficient variations of the inner working of the black box that
interpretation of the biomarker is fortuitous rather than causal. A good example is
the work done by Iyengar et al. (2012) in which an EGFR biochemical network
containing up to four genetic alterations (i.e., overexpression, SNP, miRNA
expression, methylation status of promoter) exposed to the same degree of EGFR
inhibition produced uniquely different responses based on tumor size. Measurement
of a single biomarker—here tumor size or extent of EGFR inhibition—provides no
insight as to why tumor size varied in these virtual patients or why the same degree
of EGFR inhibition (80 % in this case) did not produce the same tumor size.
The EGFR model was referred to as an enhanced pharmacodynamic model (ePD) to
denote the shift from traditional pharmacodynamic models. Others have also
appreciated complex drug action and put forth pharmacodynamic models that could
double as a biochemical scheme. For example, a pharmacodynamic model for
methotrexate depicted its multiple enzyme targets as well as interconnected
metabolites (Panetta et al. 2010). The potential value of ePD models is clear.
Whether a drug has only one or multiple targets, the influence of measured or
predicted changes in the interconnecting proteins on signal flux and the final drug
response can be determined. Thus, each patient may have a unique pharmacody-
namic network or model—cast as a set of ODEs—that provides a simulation tool of
their drug response (i.e., precision medicine). The individual ePD model outputs
can be used directly to tailor therapy or analyzed as a population of patients to
address questions like “is there a subset of patients that favorably respond to the
drug and what are the biochemical characteristics”? By addressing the latter
questions early in the drug development process, perhaps with a virtual population,
an efficient means to decide on the future development strategy could be attained.

4 Systems Pharmacology: An Overview 71



4.7 Systems-Based PK/PD Models

Pharmacodynamic models rarely exist as isolated entities and are linked to phar-
macokinetic models to increase their usefulness by providing a total pharmaco-
logical package (Fig. 4.5). Historically, PK models were multi-compartment
models that consisted of a set of black boxes to represent the various tissue regions
that behaved kinetically quite similar. A link to the drug target organ via an effect
compartment sufficed as a combined PK/PD model, wherein the effect compartment
was often represented as the Sigmoid Emax model (Sheiner et al. 1979). In many
cases, rather than the effect compartment formulation, the plasma drug concentra-
tion—again generated from the classic compartmental modeling approach—pro-
vided the link to the pharmacodynamic model. Even with the seminal advance of
indirect response pharmacodynamic models made by Jusko and coworkers, plasma
drug concentrations most often provided the link between PK and PD models
(Dayneka et al. 1993). The simplicity of plasma drug concentrations was also
utilized in conjunction with a VEGFR ePD model used to design novel multidrug
regimens (Zhang et al. 2014). Although plasma drug concentrations have merit in
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Fig. 4.5 Idealized physiologically-based pharmacokinetic/enhanced pharmacodynamic model.
The ability to predict intracellular drug concentrations provides a natural link to mechanistic ePD
models. Thick black arrows in PK model represent drug transport, DT-1 and DT-2 are 2 different
drug targets, P1–P9 are different proteins with interconnecting arrows representing enzymatic
reactions, R1 and R2 are two different drug responses, and red arrows represent negative feedback
reactions
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the clinical application of PK/PD models, it is known that drug concentrations at
cellular receptors in tissues drive responses and may not necessarily mirror plasma
drug concentrations. An alternative pharmacokinetic modeling approach—
physiologically-based (PB) PK models—had been devised based on the prediction
of tissue drug concentrations that was somewhat obscure until it was rediscovered
during the upheaval in the drug discovery industry (Rowland et al. 2011). Since the
original intent of PBPK models was to predict drug concentrations based on spe-
cies- and drug-dependent parameters, it may be casted as an in silico tool to
evaluate candidate drug pharmacokinetics expeditiously and without extensive data.
During this same period, others appreciated the tissue-based assessment of drug
disposition, its mechanistic potential, and scalability to patients (Gallo et al. 2004;
Laplanche et al. 2007; Zhou et al. 2007). Now adjoining PBPK and enhanced
pharmacodynamic models was a natural fit (Gallo 2013), and highlighted by an
early investigation of the anticancer drug geldanamycin by the D’Argenio group
(87). PBPK models can be used to estimate intracellular drug concentration
(Fig. 4.5) and this capability was extended to a new paradigm referred to as
cell-type specific (CTS) PBPK/ePD models (Ballesta et al. 2014). The full power of
CTS PBPK/ePD models has yet to be realized; however, it provides a foundation to
contrast drug efficacy and toxicity in their appropriate cell types, and further to
account for heterogeneity and personalized therapy (Ballesta et al. 2014). At the
same time, due to the potential size and number of model parameters in PBPK/ePD
models, the same considerations of model construction and parameter estimation
(sloppiness) faced by network biochemical models as mentioned above also con-
fronts PBPK/ePD models (Gutenkunst et al. 2007a). Nonetheless, given their
potential to enhance mechanistic models, drug development, and novel therapeutic
strategies, it is believed that the field of system pharmacology will embrace these
challenges and through innovation move the field forward.

4.8 Future of Systems Pharmacology

The majority of diseases for which we lack effective therapeutics are complex and
progressive in nature. These include cardiovascular diseases such as heart failure,
type-2 diabetes, and kidney disease among others. Both the progression of the
disease and response to current therapy show considerable variability among
patients. These differences have highlighted the need for understanding the indi-
vidual patient in terms of her/his genomic and proteomic characteristics. Such
understanding of disease mechanisms in individual patients has been largely
focused on using genetic characteristics of the individuals. This approach has been
successful in limited cases in which singular genetic (and protein) abnormalities
determine drug response, such as for warfarin therapy. However, for complex
diseases, we are likely to have multiple genes as well as postgenomic events
regulating the disease state. Hence a systems biology-based approach that uses
network topology to describe disease states is likely to be a very useful step in
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developing dynamical models for disease progression. These models in turn should
enable the definition of mechanism-based rules to not only understand why a drug
may be effective but can further be applied to identify combinations of drug targets
(Fig. 4.6, blue boxes). Some of these targets may already have drugs that bind and
modulate their activity. In such cases, these drugs can be repurposed to treat other
diseases distinct from the one they were originally intended to treat. In other cases,
we may need to develop new drugs for particularly novel targets, but these efforts
can be made more efficient when systems level models are available.

Beyond the general approach of considering disease networks in population of
patients, there is an urgent need to understand variability, as disease progression
differs among patients (?) and the same drugs show variable efficacy in different
individuals. Here the development of disease state models that are personalized for
each patient using the genomic characteristics guided by protein structure con-
straints, as well as dynamical features that are patient specific, can set the stage for
ePD models that lead to precise individualized dosing regimens (Fig. 4.6, orange
boxes). The integration of systems biology with pharmacology has given rise to the
new field of systems pharmacology that provides an intellectual framework to
consider complex physiology, pathophysiology, and drug action in a systematic
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Fig. 4.6 Disease state specific models for systems pharmacology. The process diagrams for
workflow in systems pharmacology for drug discovery for combination therapy and for
personalized precision medicine. Typically data from groups of patients are combined to construct
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manner to drive both drug discovery and therapeutics at an individual level. Thus,
the impact of systems pharmacology on personalized and precision medicine is
likely to be substantial.
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