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ScienceDirect
Identifying the network of biochemical interactions that

underpin disease pathophysiology is a key hurdle in drug

discovery. While many components involved in these biological

processes are identified, how components organize differently

in health and disease remains unclear. In chemical engineering,

mechanistic modeling provides a quantitative framework to

capture our understanding of a reactive system and test this

knowledge against data. Here, we describe an emerging

approach to test this knowledge against data that leverages

concepts from probability, Bayesian statistics, and chemical

kinetics by focusing on two related inverse problems. The first

problem is to identify the causal structure of the reaction

network, given uncertainty as to how the reactive components

interact. The second problem is to identify the values of the

model parameters, when a network is known a priori.
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Introduction
Chemical engineering has a rich history in using mathe-

matical modeling to describe chemical systems [1,2]. As

summarized in Figure 1, mathematical models aim to

capture our understanding of the underlying mechanisms

associated with a variety of reactive and physical process-

es that govern the behavior of chemical systems. The

particular formulation of the mathematical model repre-

sents a trade-off between computational or analytical

tractability and realism. The art of modeling is finding

the right level of abstraction appropriate for the task at
Current Opinion in Chemical Engineering 2015, 10:14–24 
hand. The mathematical models are used in one of two

scenarios. The first scenario is forward modeling, where a

mathematical model is used to predict future behavior

based on changing operating conditions. The second

scenario is for inverse problems, where mathematical

models are used to interpret observations of a chemical

system as a way to identify the governing physical and

reactive processes.

Predictions derived from a mathematical model depend

on the relationships specified between the interacting

species modeled, which is expressed generally as a reac-

tion network, and the speed of information transfer by a

modeled interaction, which is captured by a model pa-

rameter. Conceptually, there are then two types of inverse

problems. The first type of inverse problem, which is

more frequently encountered, is parameter inference.

Parameter inference involves selecting a set of parameter

values or initial conditions that enable the mathematical

model to capture the observed data, where the reaction

network is known a priori. The second type of inverse

problem is network inference, which is more challenging.

Network inference involves selecting an appropriate set

of interactions among a set of plausible interactions based

on the limited information available about the reactive

and physical phenomena contained within the chemical

system. In dynamic systems, the reaction network alone

provides constraints as to how the model species could

potentially evolve in time. The goal of network inference

is then to see if the postulated reaction network can

capture the observed data given any plausible combina-

tion of model parameters and initial conditions.

Historically, these two types of inverse problems have

been treated similarly. However, changes in the scientific

landscape and advances in technology motivate

approaches specifically tailored to the specific inverse

problem at hand. The focus of this review is as follows.

First, we will discuss pharmaceutical drug discovery and

development as a pressing area of inverse problems.

Second, we will discuss some of the conceptual and

technological advances that have enables a more tailored

approach towards inverse problems that focus on either

network inference or parameter inference, especially in

cases where significant prior information exists.

Improving confidence in target selection is an
important class of inverse problems in
pharmaceutical R&D
One important application of mechanistic mathematical

models is to help in the discovery and development of
www.sciencedirect.com
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Overview of the role of mathematical modeling in the context of reactive systems. The behavior of reactive systems can be described in

mathematical terms that represent the underlying physical, kinetic, and reactive processes. The specific mathematical relationships incorporated

into a model reflect a trade-off between computational and analytical tractability and realism that relate to the specific design objectives

associated with how the mathematical model will be used. Modeling applications can be categorized into one of two applications. The first

application, called forward modeling, predicts the behavior of the system based on prior knowledge of the relative importance of the physical,

kinetic, and reactive processes. The second application is to identify aspects of reactive system that govern the behavior of the process using

experimental observations of the system. This second application is called an inverse problem.
therapeutic drugs. Using pharmacologic agents to treat

disease underpins many of the clinical successes in mod-

ern medicine. While these successes encourage an opti-

mistic outlook, there remain unmet medical needs

despite decades of intense scientific effort. The emer-

gence of multi-drug resistant bacteria, infectious

disease outbreaks, and mixed progress in the war on

cancer highlight some of these unmet medical needs

and the complexity of a constantly changing therapeutic
www.sciencedirect.com 
landscape. Engineering better medicines to fulfill these

unmet medical needs is one of the grand challenges of

engineering [3]. To address these needs, new therapies

are discovered and developed by a multi-stage process

that relies initially on model experimental systems and

then testing in humans using clinical trials. With costs

associated with bringing a new therapy to market exceed-

ing $1 billion and the high level of attrition during the

research and development process, there is significant
Current Opinion in Chemical Engineering 2015, 10:14–24
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concern over sustainability of the current model for

innovation in the industry [4–6].

In a recent NIH white paper, an industrial and academ-

ic working group found that the source of attrition had

shifted over the last couple of decades from Phase I

clinical trials, which focus on toxicology, to Phase II

clinical trials [7��]. The objective of a Phase II clinical

trial is to test the therapy in patients diagnosed with the

disease. A Phase II success is to improve clinical out-

come relative to the current standard of care. To illus-

trate the challenges of demonstrating efficacy, a recent

retrospective analysis of clinical trials in patients with

acute myeloid leukemia found that, of the 37 therapies

that received positive indications in early phase clinical

trials, only one drug actually made it to clinical use

[8]. This NIH working group observed that the failures

in demonstrating efficacy stem from an incomplete

understanding of clinical importance of a specific bio-

logical mechanism that was targeted by the therapy.

Understanding how a drug interacts with a target is

challenging as many diseases of therapeutic interest

(e.g. cancer, heart disease, and diabetes) are multi-

genic, progressive, and heterogeneous in that each case

may have a different mechanism of origin. While pre-

clinical studies using model systems supported the

clinical trials, the failure in translation suggests that

the model systems have unclear fidelity in capturing the

complexity of human disease.

One of the main recommendations to improve innovation

was to focus on a network-centric view of biology to

balance the ‘one-gene, one-receptor, one-mechanism’

(OGRM) paradigm prevalent within the industry

[9]. In short, methods developed under the OGRM

paradigm select drugs that modulate a specific therapeu-

tic target in experimental systems that have been taken

out of context. From the network-centric perspective, a

drug target resides within a complex network of interac-

tions that responds in dynamic and non-linear ways to

therapeutic modulation. Moreover, these networks can be

altered in disease such that the importance of a particular

target in regulating phenotype can be quite different in

health and disease. Beyond this, current multi-genic and

progressive diseases are the result of a multi-variate

pathology such that drug efficacy is poorly predicted by

only considering a drug’s primary target. For example,

most so-called ‘targeted’ tyrosine kinase inhibitors for

cancer therapy actually have broad spectrum activity

against several kinases, and in fact some of the ‘dirtiest’

drugs that target multiple kinases are some of the most

effective [10].

Upon this network-centric foundation, mechanistic

modeling and simulation are integrated with quantita-

tive wet lab studies to advance the systems-level under-

standing of the pathophysiology relevant for drug
Current Opinion in Chemical Engineering 2015, 10:14–24 
discovery and development. While the mechanistic

modeling and simulation aspects are more aligned with

the discipline of chemical engineering than pharmacol-

ogy, the strong focus on translational medicine motivat-

ed the group to coin a new field called quantitative and

systems pharmacology.

Quantitative and systems pharmacology
versus systems biology: What’s the diff?
On a simplistic level, one may view quantitative and

systems pharmacology (QSP) as a simple extension of

systems biology with the addition of drug dynamics.

However, they are motivated by two different objectives

and are orthogonal approaches to organize data and

knowledge about biological systems [7��,9]. QSP is mo-

tivated by applied translational research questions that

require vertical integration. To inform drug discovery,

the structure of the model tends to be focused around

the targeted pathways and disease mechanisms. Mathe-

matics is used to integrate vertically data and mechanis-

tic knowledge that span multiple levels of biological

organization thereby linking molecular targets to clinical

read-outs. For instance, a team of 3 PhD-level engineers

and 3 PhD-level immunologists worked for two years to

build a mechanistic model of the NOD mouse model of

type 1 diabetes [11��]. To predict changes in blood

glucose levels, cellular immune responses in the endo-

crine pancreas and a secondary lymphoid organ and the

trafficking of cells between these two locations were

modeled. In addition to these tissue-level and organism-

level phenomena, cytokines and cellular decision-mak-

ing processes were also represented, as these are poten-

tial points of therapeutic intervention. The model was

used to evaluate alternative strategies to induce toler-

ance to insulin, such as the optimal dose, frequency of

administration, or stage of disease progression

[12,13]. Representing drug pharmacology adds an addi-

tional layer of complexity as drugs exhibit multi-organ

dynamics that are important for their clinical perfor-

mance and that can vary significantly from patient to

patient. In contrast, systems biology studies tend to be

motivated by a desire for deep understanding of a

biological network. Mathematics is used to integrate

horizontally data and knowledge focused at a particular

scale of biological organization. For instance, Covert and

coworkers developed a model of the obligate intracellu-

lar pathogen Mycoplasma genitalium [14��]. To capture an

archtypical cell between cell division events, 28 different

cellular processes were modeled including metabolism,

transcriptional regulation and repair of DNA, synthesis

and processing of RNA, and posttranslational modifica-

tion and macromolecular assembly of proteins. The

model was then used to relate genotype to cellular

phenotype. While one could envision a future where

these two approaches lead to similar models that link

genotype to clinical read-outs, these two different

approaches are tailored to achieve the research aims
www.sciencedirect.com
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Box 1 Translating cartoons to mechanistic models: A case study

of the JAK–STAT pathway

In contrast to more traditional chemical systems, the analysis of

reaction networks associated with biological systems is characterized

by lumped reactions and poor observability. To illustrate this point,

consider the canonical Janus kinase (JAK)-signal transducer and

activator of transcription (STAT) signaling pathway, which is highly

conserved across eukaryotic organisms. As summarized in Figure 2,

this compact signaling pathway transmits extracellular polypeptide

signals, through transmembrane receptors, to control gene expres-

sion in a variety of fundamental cellular processes, including innate

and adaptive immunity [24], regulation of cell growth and apoptosis

[25], and control of embryonic stem cell self-renewal [26].

While cartoons like Figure 3 summarize the flow of molecular

information down particular pathways within cells, identifying the

network associated with a specific JAK–STAT signaling pathway

within a specific cell type is more challenging. To illustrate this point,

we will consider how Interleukin-12 (IL12) activates a JAK–STAT

signaling pathway in type 1 CD4+ T helper cells [27,28,29�]. In the

case of IL12, the integrated use of modeling, simulation, and

experimentation identified that multiple STAT proteins (STAT4 and

STAT1) can become activated in response to receptor ligation and

the activity of these STAT proteins are differentially regulated through

uncharacterized negative feedback mechanisms, as summarized in

Figure 3. The relationships between the abundance of activated

STAT4 in the nucleus and de novo protein production and release are

unique for each secreted protein, such as Interferon-g (IFNG) and

IL10 [29�]. In addition, IL12 stimulation also enhances cell survival,

which suggests that receptor ligation activates additional signaling

pathways like the phosphoinositide-3-kinase-protein kinase B/Akt

(PI3K-PKB/Akt) pathway [30]. Given the emerging complexity of the

IL12 signaling pathway, experimental observability of this pathway is

a challenge. For instance, flow cytometry can be used to obtain

multiplex single-cell measures of protein phosphorylation, protein

copy numbers, and mRNA abundance. Assuming that bench skills

and reagents are up to the task, an experiment to monitor

intracellular signaling activation and a functional response as a

function of time in a cell line can cost $10,000 (we are assuming an

experimental design involving a negative control and cells stimulated

with a single concentration of ligand that is observed at the following

time points: 0, 15 min, 30 min, 1 hours, 2 hours, 4 hours, 8 hours, and

16 hours. Flow cytometric measurements include copy numbers of a

heterogeneous receptor (IL12RB1 and IL12RB2), viability, phos-

phorylation of signaling proteins (STAT1, STAT4, and AKT), abun-

dance of inducible negative regulators of cytokine signaling (SOCS1

and SOCS3), and abundance of three mRNAs using single-cell RNA

Fluorescence-in situ hybridization (FISH). Experiments would be

performed twice with three replicates per independent trial.)

Inevitably, limitations in bench skills, reagents, or financial resources

impose a suboptimal experimental design. The mathematical models

then aid in interpreting the acquired data in light of our current

understanding of how a cell interprets IL12 to orchestrate a

response.
given current limitations in biological knowledge and

experimental methods.

While systems biology may receive more attention from

academic circles, mechanistic modeling and simulation

represents ‘dark matter’ within the pharmaceutical indus-

try, given the financial incentives for keeping competitive

advantages secret. In recent years, many of the major

pharmaceutical companies have created QSP teams. Yet,

there are few tangible case studies illustrating how mech-

anistic modeling and simulation financially impact the

drug discovery process. Related examples include devel-

oping monoclonal antibodies against ErbB3 for treating

cancers addicted to Epidermal Growth Factor signaling

[15,16]. This target is interesting as an OGRM approach

would not have selected ErbB3 as a target, since it is a

catalytically inactive kinase. By focusing on the network,

ErbB3 was found to be an obligate dimerization partner to

other ErbB receptors targeted by trastuzumab (i.e.

ErbB2) or lapatinib (i.e. ErbB1/ErbB2) [17�]. In assessing

toxicity, QSP approaches have yielded better classifiers

for arrhythmia risk [18�] and predictive models for hepatic

injury [19].

Biological systems present unique challenges
in contrast to more traditional chemical
processes
The conceptual toolkit developed to analyze and design

chemical systems provides a rich framework to aid in

understanding how biological networks function in health

and disease. The focus on how cells process information is

a natural point of focus as the transfer of information with

a cell involves the reactive conversion and intracellular

transport of a number of biochemical species, as described

in Box 1. Moreover, decades of detailed biochemical and

molecular biology studies have identified the major com-

ponents of these intracellular signaling networks. This

prior information can significantly reduce the set of pos-

sible networks that can explain observed behavior. For

instance, candidate networks can be obtained by mining

the published literature [20,21]. However, this prior in-

formation can also significantly bias how we interpret

experimental observations, given the limited observabil-

ity of biological systems.

Experimental observability is probably one of the big-

gest differences between traditional chemical processes

and biological systems. Cellular decision making is reg-

ulated by the spatial localization and posttranslational

modification of proteins within a cell. Given technical

limits in detecting small numbers of proteins, many

assays measure cellular decision making indirectly or

using significant assumptions. Given that nucleotides

can be easily amplified using PCR, changes in gene

expression are used as a surrogate measure of nuclear

localization of a signaling protein. Assuming that a large

population of cells (e.g. 1 � 106 cells) behave identically,
www.sciencedirect.com 
protein abundance and posttranslational modifications

can be quantified  by Western blot [22]. In practice, these

experimental limitations imply that multiple approaches

must be used and the resulting data should provide a

self-consistent picture of cellular decision making. As

described in the next section, math models aid in testing

whether these data are self-consistent and consistent

with what we currently know about the biology. For

example, single-cell biochemical and imaging measure-

ments acquired over time and in different cell types in
Current Opinion in Chemical Engineering 2015, 10:14–24
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Figure 2
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A cartoon illustrating the canonical JAK–STAT signaling pathway that

initiates a cellular response, as depicted by secreted protein

production, in response to stimulation with an extracellular ligand. An

extracellular soluble cue binds to a multi-protein complex that is

comprised of transmembrane receptor proteins and associated Janus

kinases. Upon ligand binding, the receptor changes conformation

enabling the JAKs to phosphorylate STAT binding sites within the

cytoplasmic tails of the receptors. The STAT proteins then associate

with the activated receptor complex and subsequently become

phosphorylated by the JAKs, as indicated by the green dot. The

phosphorylated STAT proteins dimerize and migrate to the nucleus to

initiate the transcription and translation of the corresponding STAT-

responsive genes, which include cytokines that are released by the

cell to help coordinate cellular response. STAT proteins become

deactivated following dephosphorylation by a number of different

phosphatases, including protein tyrosine phosphatases (PTP) that are

present within the cell.
response to different perturbations were used to identify

the dynamic regulation of adhesive  contacts between

adjacent cells [23�].

In addition, biological systems contain a number of com-

plex biological processes that confound identifying the

underlying physical and reaction processes from experi-

mental observations of cellular behavior. Cellular

responses to extracellular cues are governed by a variety

of biological processes that can influence protein struc-

ture, protein abundance, the functional response to sig-

naling protein activation, and other contextual cues

present within the local microenvironment of the cell

(Figure 4). Each of these biological processes also has
Current Opinion in Chemical Engineering 2015, 10:14–24 
associated time scales in which a change can be observed

in response to a perturbation. Introducing a time delay

between an experimental perturbation and assaying a

cellular response implies that many of these different

biological processes can become involved in influencing

the cellular response. The challenge in improving our

understanding of biological systems comes from decon-

voluting the contributions of these different biological

processes, which remains a pressing problem in identify-

ing the networks that regulate cellular responses [31].

Bayesian statistics and Markov chain Monte
Carlo methods are reshaping how we
approach inverse problems in reactive
networks where prior knowledge exists
In part, these two types of inverse problems reflect a

distinction between concepts associated with statistics

and causality [32]. Statistical concepts are applied to

quantify uncertainty, which is captured through the use

of distributions [33]. In contrast, causality concepts are

used to identify how observable events are structured

into independent and dependent variables, which

implies that the value of one variable is conditioned

on the value of another variable. Causality can be

depicted as a directed graph, where the variables com-

prise the vertices, such as the ligand and receptor in Box

1, and causal relationships are depicted as directed

edges, such as an arrow that indicates that a ligand binds

to the receptor to form a multi-protein complex. A

directed edge is a generalization of a reactive event that

can range from elementary steps to lumped reactions,

which is more common in biology. The key idea drawn

from chemical kinetics is that causality among reactive

species is determined based on how the variables dy-

namically respond to perturbations [34]. For instance,

observed species can be rank ordered into primary, that

is those species impacted directly by the perturbation,

and secondary, that is those species impacted indirectly

by the perturbation through intermediates, based on

their kinetic responses [35–37]. Given the uncertainty

associated with experimental observations, the statisti-

cal and causal concepts are integrated through the use of

conditional probability: P(YjX, M), which is the proba-

bility of observing the value of a dependent variable (Y),

given the value of the independent variable (X) and the

causal model (M) that captures our understanding of the

relationship between X and Y.

In silico model-based inference is an emerging approach

that can be applied to inverse problems especially

where prior knowledge exists [38], as summarized in

Figure 5. To test the implications of the causal structure

of a network model, the posterior distributions in the

model predictions (PðŶjMÞ) need to be established, which

also depend on the available data (Y) and the uncertainty

in the model parameters (P(QjM)). To account for these
www.sciencedirect.com
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Figure 3
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The emerging JAK–STAT pathways associated with IL12 signaling in type 1 T helper cells. IL12 binds to a multi-protein receptor complex

comprised of two transmembrane receptor proteins, IL12RB1 and IL12RB2 that are bound to the Janus kinases TYK2 and JAK2, respectively.

Binding of the receptor complex by IL12 results in the phosphorylation of both STAT1 and STAT4. STAT1 plays a role in the expression of

IL12RB2 while STAT4 promotes the transcription and translation of Interferon-g (IFNG) and Interleukin-10 (IL10). While initially activated by IL12,

STAT1 becomes dephosphorylated through an unclear mechanism that may involve the inducible expression of a phosphatase, like a Suppressor

of Cytokine Signaling (SOCS). The intracellular transport of the receptor complex (i.e. receptor trafficking), dilution of proteins due to cell

proliferation, and signaling pathways that connect IL12 stimulation to enhanced cell viability are some of the biological processes not depicted in

this diagram.
confounding influences, we can formulate the problem as

an integral:

PðŶjMÞ ¼
Z þ1
�1

Z þ1
�1

PðŶjQ; MÞ � PðQjM; Y Þ � P

� ðY ÞdQdY : (1)

As P(QjM, Y) is difficult to obtain directly, Bayes theorem

is used to re-express this in terms of quantities that we can

calculate,

PðQjM; Y Þ � PðY Þ ¼ PðY jQ; MÞ � PðQjMÞ; (2)

to give:

PðŶjMÞ ¼
Z þ1
�1

Z þ1
�1

PðŶjQ; MÞ � PðY jQ; MÞ � P

� ðQjMÞdQdY : (3)

In Eqn 3, P(QjM) is the probability of sampling a

point (Qi) in parameter space Q before any knowledge

about data Y (i.e. the prior for Q) and P(YjQi, M) is the
www.sciencedirect.com 
conditional probability of observing data similar to the

simulated response Y when Qi and M are given (i.e. the

likelihood of Y, given Qi and M). Generally, PðŶjQ; MÞ
represents how the modeled variables will evolve in time,

based on a set of parameter values and a mathematical

model. In the case of a deterministic model, this condi-

tional probability collapses down to a single path that

describe how the variables evolve in time for a single set

of parameter values.

To solve for PðŶjMÞ, integration over the finite discrete

set of experimental observations (Y) is equivalent to a

sum over the comparisons between each model predic-

tion, Ŷ, and the corresponding observation, Y, as repre-

sented by the likelihood term: P(YjQ, M). Integrating

with respect to the parameters, Q, is more difficult.

Exponential leaps in computational power have enabled

Markov Chain Monte Carlo (MCMC) methods to inte-

grate Eqn 3. Given the explosion of MCMC methods in

general, resources for MCMC integration are abundant,

including reference texts [39,40], stand-alone software
Current Opinion in Chemical Engineering 2015, 10:14–24
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Figure 4
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Besides the physical and reactive processes typically associated with

chemical systems, a variety of additional biological processes

influence how cells respond to extracellular cues. A sampling of

biological processes that orchestrate the cellular responses to an

extracellular cue (ligand) are shown as a function of their associated

kinetic time scales. With the fastest time scales, ion changes in the

cytosol and post-translational modifications influence protein structure.

Changes in protein structure alter the affinity of protein interactions.

Protein abundance can be altered due to signaling-induced changes in

abundance via de novo synthesis, degradation, or dilution within an

expanding cell population. Epigenetic changes influence the

relationship between transcription factor activation and the resulting

protein synthesis by altering promoter binding sites, mRNA stability, or

translation. Finally, cellular response can be modified by additional

secreted or metabolic cues present within the local microenvironment

that can, in turn, be shaped by the cell populations themselves.
[41–45], and R packages [46]. While MCMC algorithms

are relatively simple to program, they can be a challenge

to implement correctly such that the results provide an

estimate of PðŶjMÞ. For instance, the criteria to assess

convergence of the Markov Chains should be applied to

the model predictions and not the model parameters due

to the presence of kinetic slaving in dynamic systems

[47,28]. Kinetic slaving means that the overall speed of

information transfer within a network is slaved to the

slowest step within the network. Other steps in the

network are either near equilibrium or are kinetically

unimportant.

Applications to network inference

To achieve meaningful learning, one must first identify

and address misconceptions that are specific to a scientific

domain (i.e. prior knowledge) [48]. In the context of

network inference in biology, a discrepancy between

our model and an observation identifies flaws in our
Current Opinion in Chemical Engineering 2015, 10:14–24 
current understanding of the modeled system. Histori-

cally, the models most frequently used are mental mod-

els, which are communicated as cartoons (see Box 1).

However, biological systems, like cell signaling networks,

exhibit characteristics that make it extremely difficult to

test our mental models, namely embedded dynamics,

feedback regulation, or competing pathways. Dynamic

mathematical models, like systems of coupled ordinary

differential equations, provide a quantitative framework

for encoding our causal knowledge about systems

[32]. Predictions derived from the models can be used

to test our models against data. Historically, these pre-

dictions are a single dynamic trajectory that is dependent

on the values of the underlying model parameters. How-

ever, uncertainty in the model predictions is convoluted

with the uncertainty of the model parameters. Thus, it is

impossible to make confident statements about model

inadequacy, given our ignorance of the underlying pa-

rameter values and the biology (e.g. protein–protein

interaction energies or protein abundance) that they

represent.

In a network inference context, in silico model-based

inference methods can be used to encode competing

hypotheses regarding the causal network and then gen-

erate posterior distributions in the model predictions by

statistically sampling over all parameter values that give

predictions that are consistent with the observed data. As

the error between a model prediction and observed data

should be normally distributed with a zero mean value,

competing hypotheses can be rejected if they systemati-

cally deviate from the observed experimental data. Com-

peting hypotheses that pass model invalidation criteria

can then be evaluated using a Bayes Ratio, which quan-

tifies the strength of evidence that favors one model over

another, as illustrated in [49,45]. Alternatively, a number

of other model selection criteria, like the Akaike Infor-

mation Criterion, have been proposed, as reviewed in

[50]. These criteria quantify the perceived trade-off be-

tween predictive power, as commonly quantified by the

summed squared error between the observations and

model predictions, and a penalty term associated with

model complexity, which can be related to the number of

parameters. While these model selection criteria provide

a simple metric, there are a number of underlying

assumptions in developing these relationships that are

not commonly encountered in biology. First, these crite-

ria are applied in the asymptotic limit of empirical clarity,

which means that the states of the system are all observed

and all of the model parameters can be identified. Second,

the penalty terms are ad hoc, which makes the criteria

qualitative as a different weighting scheme would select a

different winner among similarly scoring models [51]. In

biology, the complexity of the model is influenced heavily

by prior knowledge of the reactive network and observ-

ability is limited. A biologically realistic model inevitably

includes many parameters that cannot be identified in
www.sciencedirect.com
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Figure 5
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Ŷ 

A schematic of an emerging approach for inverse problems that use mechanistic mathematical models of reactive systems. This approach

leverages concepts from Bayesian statistics, probability, and advances in computational power to test competing hypotheses regarding causal

structure of the reaction network. A mechanistic model of the reactive system, prior knowledge of parameter values, and experimental data are

inputs to a computational filter. If prior knowledge of the key processes that govern the behavior of the reactive systems is weak, multiple

competing hypotheses could be proposed as a reaction network. If prior knowledge of the parameter values is also weak, the computational filter

uses this information as it searches parameter space to select a statistically based ensemble of parameter values (red region of parameter space),

given the uncertainty in the experimental data and model. This ensemble of parameter values are then used to generate a corresponding

ensemble of predictions that describe probabilistically how the system evolves in time from the initial values, given the specific data and network

model. A model invalidation step involves testing whether the difference between the model predictions (Ŷ) and experimental data (Y) do not have

systematic differences (i.e. fŶ � Yg 6¼ Nð0; s2Þ). Finally, a Bayes Ratio can be used to select among competing hypothesis as to the governing

processes associated with the reactive system.
practice. To improve parameter identifiability, timescale

analysis of reactive networks provides a data-based ap-

proach to select the appropriate complexity [28].

As all models are abstractions of reality, the value of the

model ultimately depends on the fitness-of-purpose of

the model for aiding inductive/deductive reasoning. The

goal, then, is not necessarily to confirm our existing

knowledge, but to use mathematical models to capture

our cognitive understanding of the system and challenge

these models with experimental data to identify flaws in

our current understanding, as discussed in [38]. One
www.sciencedirect.com 
example of the approach is mentioned in Box 1, where

the differential regulation of STAT1 versus STAT4

phosphorylation, an indirect measure of activity, in re-

sponse to IL12 stimulation was identified after an

initial data set was unable to distinguish between com-

peting hypotheses [29�]. Another example focuses on the

dynamic regulation of adherens junctions [23�], which

maintain the integrity of epithelial tissues through extra-

cellular homotypic bonds. Experimentally, quantitative

single-cell and population-level in vitro assays were used

to quantify the endogenous pathway dynamics following

the proteolytic disruption of the adherens junctions.
Current Opinion in Chemical Engineering 2015, 10:14–24
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Using prior knowledge of isolated elements of the overall

network, these data were interpreted using in silico mod-

el-based inference to identify the topology of the regula-

tory network. While not previously recognized as playing

a role in this network, an endocytic recycling pathway was

essential to capture the observed data. Collectively, the

data suggest that the regulatory network contains inter-

locked network motifs consisting of a positive feedback

loop, which is used to restore the integrity of adherens

junctions, and a negative feedback loop, which is used to

limit beta-catenin-induced gene expression.

Applications to parameter inference

The parameters of a model can include rate parameters

that quantify the propensity of a reaction to proceed,

initial values of the model, and nuisance parameters that

are required to map a mathematical model onto experi-

mentally observed values. By integrating Eqn 3 using a

MCMC approach, the predictions contained within the

converged segments of the Markov Chains represent

samples from posterior distribution in the model predic-

tions, PðŶjMÞ. In addition, the corresponding parameter

values from the converged segments of the Markov

Chains represent samples from the posterior distributions

in the parameters (P(QjY, M)):

PðQjM; Y Þ ¼ PðY jQ; MÞ � PðQjMÞ
PðY Þ ; (4)

where P(QjM) is the prior for the model parameters and

P(Y) serves effectively as a normalization constant.

In implementing a MCMC approach for parameter infer-

ence using mechanistic models of dynamic systems, there

are a couple of points to keep in mind. First, the parame-

ter priors should have heavy tails, meaning that prior

probability for a particular set of parameter values

(P(QjM)) should be greater than the posterior probability.

In traditional chemical kinetic systems, the priors for

parameters may be well defined in thermodynamic terms

and calculated using ab initio methods (e.g. [52]). In

models where multiple kinetic processes are grouped

together as a lumped reaction, the prior distribution

may be broad as possible values of the parameters are

known only within a couple of orders of magnitude.

Second, the data should ‘swamp’ the prior, which means

that the posterior distribution should reflect the combi-

nation of the data and the model used to interpret the data

rather than an arbitrary choice of prior distributions for the

parameters. Although in practice, this is difficult to diag-

nose, which leads to the last point. Finally, the structure

of mechanistic models of biological systems is created

based on the prior knowledge of the key variables in-

volved in a system. In creating a more realistic model of

the biology, additional parameters become incorporated

into the model. However, the available data may only

constrain a subset of the parameters through a process

described as kinetic slaving.
Current Opinion in Chemical Engineering 2015, 10:14–24 
In kinetic slaving, parameters associated with reactions

that are fast, such as pre-formed multi-protein complexes,

or that are kinetically unimportant, such as stationary

reactions, exhibit one-sided distributions [28]. This

means that parameters associated with fast (or stationary)

reactions are only constrained such that the value has to

provide a time scale that is faster (or slower) than the

observable time scales associated with the rate-limiting

steps. This is a subtle but important point as many studies

that apply statistical inference methods to inverse pro-

blems related to dynamic biological networks provide

distributions in the model parameters that have bounds

all supposedly informed by data (i.e. a posterior distribu-

tion) but that are in the form of a multivariate Gaussian

distribution (i.e. all the parameters are bounded). Dis-

tributions in parameters of dynamic system models that

are inconsistent with kinetic slaving is an indication that

distributions do not reflect the experimental data but are

constrained by the prior or that the model has been overly

simplified to achieve an empirical fit.

Conclusion
In understanding traditional chemical processes and in

engineering better medicines, making mechanistic mod-

els of these reactive systems involve similar challenges,

which involve establishing causal relationships among

reactive components of a system based on their observed

dynamics. Moreover our existing knowledge of these

systems is incomplete, as we have some prior knowledge

of the likely reactive components and how they influence

system response, and our ability to observe the system is

limited. Nonetheless, these mechanistic models aim to

assist our natural intuition and facilitate communication

by providing a concrete realization of how we think the

system works. While mathematics and simulation play

central roles in addressing these problems, advances in

computational power have enabled more sophisticated

methods that provide a solid statistical and probabilistic

foundation to test our mechanistic understanding against

data.

Here, we provide an overview of some of the emerging

model-based inference tools that leverage Markov Chain

Monte Carlo methods enabled by increases in computa-

tional power and concepts drawn from Bayesian statistics,

probability, and chemical kinetics. We have focused on

applications related to cellular signal transduction net-

works, which transmit molecular information within a cell

to regulate a functional response. Given the importance of

understanding cellular behavior to engineer better med-

icines, cellular systems are particularly challenging as

limited observability of these intracellular networks is

more acute and potential reactive components of these

systems are being discovered at an increasing pace.

Computational approaches built upon solid statistical

and causal foundations, as described here, will be increas-

ingly used to help think more clearly about the dynamic
www.sciencedirect.com
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relationships among the components of reactive net-

works.
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