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Pharmacokinetics (PKs) and pharmacodynamics (PDs) have always been integral
to the design of rational drug dosing regimens. Early on PK-driven approaches
came under the auspices of therapeutic drug monitoring that progressed into
population-based PK and PK/PD modeling analyses. As the availability of tissue
samples for measurement of drug concentrations is limited in patients, the bulk
of such model-based methods relied on plasma drug concentrations to both build
models and monitor therapy. The continued advances in systems biology and the
spawning of systems pharmacology propelled the creation of enhanced PD (ePD)
models. One of the main characteristic of ePD models is that they are derived
from mechanistically grounded biochemical reaction networks. These models are
commonly represented as systems of coupled ordinary differential equations with
the ability to tailor each reaction and protein concentration to an individual’s
genomic/proteomic profile. As patient genomic analyses become more common,
many genetic and protein abnormalities can be represented in the ePD models, and
thus offer a path toward personalized anticancer therapies. By linking PK models
to ePD models, a full spectrum of pharmacological simulation tools is available to
design sophisticated multidrug regimens. However, ePD models are not a panacea
and face challenges in model identifiability, scaling and parameter estimation.
Nonetheless, as new technologies evolve and are coupled with fresh ideas on model
implementation, it is likely that ePD and PK/ePD models will be considered a viable
enterprise to customize anticancer drug therapy. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The design of drug dosing schedules entails the
rational choice of the drug amount, the frequency

of administration, and the context in which the drug
or drugs are used that considers the specific patient
and what other drugs may be co-administered to
avoid drug–drug interactions. Systematic approaches
to these drug dosage design concerns have been in
large part within the domain of pharmaceutical scien-
tists that historically have relied on pharmacokinetic
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(PK) information, and more recently, pharmacody-
namics (PD) data as well. The progression of these
approaches is outlined below.

The advent of personalized medicine and the
explosion of genomic assays and bioinformatic tools
have created a somewhat parallel domain that has
led people away from PK-/PD-based drug dosing
designs. This may be temporary and simply reflect the
newness of genomic-centric personalized medicine in
which drugs predicted to be effective are identified1.
Whether or not these drugs prove to be active in an
individual patient remains to be seen, yet to test those
drugs without a PK or PK/PD analyses jeopardizes the
likelihood of success. Personalization of drug therapy
should not stop at identifying active drugs but be
extended to include a pharmacological step; a process
in which PK and/or PK/PD analyses are also conducted
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to specify drug doses, schedules and examination of
drug–drug interactions. How these pharmacological
approaches can be implemented is discussed below.

The evolution of drug discovery and devel-
opment paradigms has seen an increasing use of
PK-/PD-driven modeling and simulation (M&S)
to the extent that it is a common component of
the drug development machinery and exemplifies
the learn and confirm strategy 2. This seemingly
independent M&S development fits nicely into
personalized medicine that is applied in late clinical
trials and post-marketing analyses. Now PK/PD mod-
els and specifically network PD models (referred to as
enhanced PD or ePD models) can be generated for vir-
tual patients – for example using public databases as
the TCGA (https://tcga-data.nci.nih.gov/tcga/) – early
in drug development to predict drug performance
in a population of patients with defined genomic
characteristics. Whether these predictions prove valu-
able will require new prospective investigations but
it is enticing to consider their power. Each virtual
patient and associated PK/network PD model could
simulate drug effects that could be used to predict
both favorable and unfavorable actions. Such sim-
ulated results could be categorized by patient and
tumor type to provide a drug activity/toxicity pro-
file that could be used to decide whether the drug
should be moved into clinical trials, and if so, in
which patients and at what doses. The convergence of
PK/PD, genomic medicine, and systems biology ensure
a rich milieu of pharmacological research in the years
ahead.

THERAPEUTIC DRUG MONITORING

The design of drug dosing regimens – drug amount,
frequency, and duration – based on pharmacokinetic
(PK) information has been an integral part of clinical
pharmacology since the 1970s3,4. Drugs that have pro-
vided the impetus for the rational design of drug dos-
ing have narrow therapeutic windows – risk of toxi-
city is high – or the achievement of minimally effec-
tive drug concentrations is tantamount to effective
therapy. The basis for therapeutic drug monitoring is
that drug concentrations, either plasma or target tis-
sue drug concentrations, are related via mathematical
functions to drug response and efficacy. PDs defines
these relationships that vary from simple linear mod-
els – an increase in concentration produces a propor-
tional increase in response – to the well-established
Sigmoid Emax model5. Once a PK/PD relationship is
established, doses and schedules can be determined
through iterative PK/PD model simulations (consid-
ered below) or from standard equations to achieve

desired drug concentrations or cumulative exposures.
For example, assuming a desired plasma drug concen-
tration range or target is known, a simple means to
adjust dose is through the use of a steady-state – rate
in equals rate out – formula as follows;

FX0

𝜏
= CL

(
Css

)

where F is the oral bioavailability (1 if drug given
intravascularly), X0 is dose, 𝜏 is dosing interval, CL
is total systemic clearance, and Css is the targeted
steady-state (or average if a multiple-dose regimen
is used) plasma concentration. It can be seen that
dose or the dosing interval or both on the left-hand
side of the equation can be adjusted to equal the
product of drug clearance and the targeted drug con-
centration on the right-hand side of the equation.
The individual patient’s total clearance is determined
directly or could be obtained from a population esti-
mate that is adjusted from individual variables. For
example, renally excreted drugs like the aminoglyco-
side antibiotics are dependent on the glomerular fil-
tration rate (GFR), and thus, the patient’s GFR pro-
vides a means to individualize clearance from a popu-
lation estimate, and thus, design a ‘personalized’ dos-
ing regimen6. There are numerous variations on this
theme yet the essential requirements are knowledge
of the PK characteristics of the drug – either in the
population or individual – and a PK/PD relationship;
the latter are mostly based on a simple biomarker
or phenotypic responses. It can be appreciated that
drugs given chronically can be monitored by mea-
surement of plasma drug concentrations and dosing
regimens adaptively adjusted. In these cases, the term
therapeutic drug monitoring applies as patients are
continuously monitored – typically plasma drug con-
centrations – to ensure the dosing schedule achieves
the desired concentrations.

PHARMACOKINETIC-GUIDED DOSING
FOR ANTICANCER DRUGS

Model-based design of anticancer drug dosing is pred-
icated on the same general ideas as therapeutic drug
monitoring; however, there are some important differ-
ences. Notably, many of the anticancer drugs are gen-
eral cytotoxics in which dosing is cyclic – about once
a month – and limited by dose-dependent hematolog-
ical toxicity7, and thus, the condition of steady-state
and those associated equations are not applicable.
Although non-hematological toxicities, such as kid-
ney or liver, could be the basis for dosage adjustment,
hematological toxicity has been most often used as the
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criteria to set the maximum tolerated dose. A clas-
sic example is the so-called Calvert formula that was
developed for carboplatin8;

Dose (mg) = AUCtarget (1.2GFR + 20)

where the AUCtarget is the desired unbound plasma
area-under-the-curve, and represents the systemic
exposure. The selected dose is based on the desired
target AUC and is dependent on the patient’s renal
function that is the primary route of carboplatin
elimination. Underlying this equation is data that
define successful carboplatin exposures and their
relationship to thrombocytopenia. Over the years,
modifications to this have been implemented based
on data in different populations and alternate param-
eter estimation techniques9. Another example that
embodies the essence of PK-guided dosing, and adap-
tive control, is based on the work of Ratain and
co-workers10. After evaluation of a series of linear
and nonlinear regression models, they found that a
nonlinear Sigmoid Emax-type model best character-
ized etoposide-induced depression of white blood cells
(WBC) and etoposide plasma concentrations, here
measured at 24 h of a 72-h continuous infusion. As is
common in these analyses, a host of patient covariates
are statistically analyzed to determine whether they
affect the PK or PD. In this case, albumin was a factor.
The model was:

WBCn = WBC(0.166ALB)
p

⎡⎢⎢⎢⎣
1 − C2.464(

C2.464 + 5.8252.464
)
⎤⎥⎥⎥⎦

where the n and p subscripts refer to the nadir and pre-
treatment WBC, respectively, ALB is the serum albu-
min concentration and C is the 24-h etoposide plasma
concentration. Another equation, based on PK, related
the 24-h concentration to the dose, and thus, succes-
sive cycles of therapy could be dose-adjusted based on
measurements from the preceding cycle. Characteris-
tic of these types of analyses are the use of statistical
tools, such as training and validation patient datasets
and Bayesian inference.

As stated earlier, the level of sophistication in
dosage regimen design of anticancer drugs has paral-
leled advances in PK/PD modeling with many stud-
ies utilizing population-based PK and PK/PD mod-
els. Population-based PK/PD modeling emanated from
the desire to account for interpatient variability and
to provide a means to incorporate both dense and
sparse data – standard in Phases II and III investiga-
tions - into a single modeling paradigm11. Nonlin-
ear Mixed-Effects Modeling and the program NON-
MEM have been at the heart of these efforts, although

other population-based programs, such as ADAPT V
and Monolix, are often used12. The typical strategy is
to develop a PK or PK/PD model from all the mea-
sured plasma drug concentrations without the use of
patient covariates, and then using various statistical
tools, such as general additive modeling, obtain a
model that defines relationships between key PK vari-
ables – total clearance is most common – and signifi-
cant covariates in the form of an algebraic equation13.
The covariates may be categorical or continuous vari-
ables and include a wide range of patient variables
such as body size to genotype. An example of a PK
parameter–covariate relationship comes from a study
on topotecan, a topoisomerase I inhibitor that causes
dose-dependent myelosuppression14. Through a stan-
dard model building procedure, the typical value of
clearance (TVCL) was;

TVCL = 32.0 +
[
0.356 (WT − 71) + 0.308

× (HT − 168.5) − 8.42 (SCR − 1.1)
]
∗

(1 + 0.671SEX)

where weight (WT), height (HT), serum creatinine
(SCR), and sex (0 for female and 1 for male) were
patient-specific covariates that were used to calculate
each patients total clearance. The latter could then
be used to adjust dose to achieve a desired systemic
exposure (i.e., AUC) of topotecan or as was done here
used to define a Sigmoid Emax model relating AUC
to the absolute neutrophil count (ANC); the latter
was used as a means to set the dose for a targeted
degree of ANC suppression. These examples illustrate
the primary operating domain for PK/PD analyses in
clinical oncology in which the depth of PD analyses
was often limited, and as mechanistic modeling was
not a primary goal, the stage is set for new approaches
that may be applicable to next generation anticancer
drugs.

PK MODELS

As indicated above, PK models or associated drug con-
centrations can provide the basis to design customized
anticancer drug regimens. In the clinical setting,
population-based PK models have taken precedence
in this approach. Most often the PK model is a classic
compartmental model based on measured plasma
drug concentrations; however, increasing interest in
physiologically based (PB)PK models is due to their
mechanistic underpinnings and species-to-species
scalability15. PBPK models are tissue-centric and offer
a means to specify tumor drug concentrations, even
intracellular drug concentrations16. This data can be
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obtained with in vitro cell studies and whole animal
studies, typically mice bearing xenografts. In addi-
tion to such data-driven approaches to build PBPK
models there are significant efforts to build models in
silico based on a paucity of experimental data17. The
underlying physiological nature of PBPK models and
the use of a drug’s physicochemical attributes facil-
itate these efforts. The mechanistic nature of PBPK
models provides a logical and quite compatible link
to network PD or ePD models described below18,19.
Regardless of the type of PK model, its link to the
ePD model provides a unified modeling platform to
consider both PK and PD variables in drug regimen
design. This modeling paradigm is a powerful tool
that is pharmacologically based to assess the intrica-
cies of dose- and time-dependent events that impact
the efficacy of drug therapy.

EVOLUTION OF PD MODELS

PD models of anticancer drugs, as with other ther-
apeutic categories, have relied on biomarker-based
models20. Typically, a PD biomarker is the drug tar-
get protein, such as a kinase, or a singular down-
stream signaling protein that can be readily measured
in patient samples. Unless tumor samples are avail-
able – not a routine endeavour – a surrogate cell or
circulating tumor cell from blood would be the sam-
ple source. This one-dimensional biomarker mind-set
reflected the clinical desire to identify a readily avail-
able tool to demonstrate target engagement as a sur-
rogate for drug efficacy. Of course the simplicity and
convenience of a biomarker is not disputed, but its
value is questioned given the complex nature of drug
action, and how efficacy is dependent upon the pro-
tein network downstream of the target. Acknowledg-
ment of the complex nature of drug action opens
the door to systems-based analyses that are being
forged on various fronts. It is important here to dis-
tinguish between systems-based methods to personal-
ize drug therapy based on genomic-centric methods
versus those that use dynamic models, referred to as
enhanced PD or ePD models18,19. The genomic-centric
methods will analyze patient data from one or many
different genomic platforms (i.e., gene expression,
RNAseq, exome sequencing, miRNA) to categorize
patients into signatures or clusters that can be asso-
ciated with drug responders or nonresponders21–23.
Integration of drug sensitivity data often from in
vitro cell sensitivity assays with the patient clusters
or molecular signatures provides a pathway to rec-
ommend active drugs. The appeal of genomic-centric
methods is understandable given the increasing avail-
ability of genomic platforms including lower costs and

sophisticated bioinformatics techniques to parse the
rich data. Another interesting network approach to
design combination chemotherapy incorporated dif-
ferent types of data – genetic, proteomic, and pheno-
typic – to demonstrate enhanced drug sensitivity could
be obtained by sequencing drugs that caused epider-
mal growth factor receptor (EGFR) inhibition and
DNA damage in triple negative breast cancer cells24.
However, neither the genomic-centric nor the latter
approaches utilized PK data and thus, specification of
drug doses and frequency of administration, not to
mention the potential of drug–drug interactions is lim-
ited. Nonetheless, as will be presented below, the initi-
ation of personalized drug therapy with genomic anal-
yses serves an important function in ePD methods so it
is likely that static genomic and dynamic model-based
methods will continue to merge or at least share cer-
tain attributes.

Systems-based models of drug action are based
on the simple acknowledgment that cellular decisions
to live or die are not accurately predicted from just
the measurement of target inhibition even when the
drug is selective for one receptor19. Particularly in
cancer where patients possess numerous genetic and
protein abnormalities that affect cell signaling and ter-
minal decisions of death, a broader systems view of
drug action seems prudent. The desirability of a sys-
tems pharmacological view of drug action embodied
in network or ePD models is counter-balanced by the
challenges of building such models, yet the ability to
understand how dose-dependent and time-dependent
variables influence system behavior and ultimately
phenotypic response is a meritorious objective. As
mentioned above the barriers to obtain genomic
data from each patient will recede, and thus, both
genomic-centric and ePD-based model methods gain
momentum to continue efforts to personalize therapy;
however, the more challenging task for model-based
approaches is to obtain multiplex protein measure-
ments. It is enzyme activities and, for example, phos-
phorylation states of proteins that determine many
drug response, and are a highly valued – if not essen-
tial - asset to define models and estimate model param-
eters. In lieu of patient-specific protein measurements,
a template on how ePD models can be constructed
and applied to the design of combination drug dosing
regimens has been offered18. A base population-based
biochemical model can be formulated from public
databases – like COSMIC and TCGA25 – and the cur-
rent literature that will likely consist of some pro-
tein measurements. At this stage, the model may be
referred to as a reference or canonical biochemical
model of a particular cancer type, for example, brain
tumors, that defines the protein–protein interactions
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in the absence of any drug intervention. The extent of
the available protein data will determine the degree
to which genomic data is used to set initial protein
concentrations. One convention that can be used is
predicated upon the following steady-state model of
transcription and translation:

0 = dm
dt

= vtc − kdmmss

0 =
dp

dt
= ktsmss − kdppss

where mss and pss is steady-state mRNA and protein
levels, respectively, vtc is gene transcription rate, kdm
and kdp is degradation rate constants for mRNA and
proteins, respectively, and kts is translation rate con-
stant. For example, using RNAseq data to estimate
steady-state mRNA levels and previously available26

degradation and translation rates, the transcription
rate and steady-state protein concentration can be cal-
culated. It is appreciated that there can be biases that
distort the linearity and quantitative nature of such
transcriptomic data, but newer techniques are emerg-
ing that may improve such features. The calculated
steady-state protein concentration is then set equal to
the initial (total, e.g., phosphorylated plus unphos-
phorylated) concentration of that protein in the bio-
chemical network. Of course, the resulting estimates
of protein concentrations are only as good as the rate
constant estimates, and those rate constants are cer-
tainly cell- and tissue-type dependent. Moreover, such
a model assumes a linear correlation between mRNA
and protein levels, which is now quite well under-
stood to only hold in some but not all cases27–30, albeit
a variety of studies typically report reasonably high
correlation (∼50–75%). Lack of correlation between
mRNA and protein levels is presumably due to trans-
lational regulation, which is becoming better under-
stood to play major roles in gene expression30. More
experiments in the cell type or tissue of interest will
bring additional certainty to the values of the transla-
tional rate constants that are most appropriate for the
modelling task at hand. Yet, as discussed above, this
requires delving into protein-level measurements, so a
cost-benefit analysis is prudent to determine whether
such assumptions are reasonable or not given the par-
ticular modelling question.

A second methodology is then used to set rate
constants for biochemical reactions such as phospho-
rylation (or other post-translational modification),
trafficking/transport, dimerization, oligimerization,
etc. Here again genomic data is more abundant, but
protein data is of course preferred, and in particular,

dynamic responses to perturbations. Regardless of the
amount or type of data available, an overriding crite-
rion is that the chosen range of values for biochemical
network parameters; (1) provide system behaviour
consistent with experimentally known characteristics,
(2) are thermodynamically consistent, and (3) are
in the range of physically feasible values (e.g., on
rate constants of bimolecular association reactions
are not faster than the diffusion limit). Typically,
simulations done in the absence and presence of
growth factors and other perturbations, calibrated to
published data, are needed. Distinctions of the data
source are important and can readily be appreciated
when one considers the availability of data in cells,
preclinical animal models and patients. The canonical
biochemical models will likely rely on all sources; cell,
animal tumors and patients, and is a limitation that is
not easily rectified at the current time. However, being
cognizant of the different data sources will permit
more rapid model revisions as new relevant data
sources become available. Nonetheless, this inherent
limitation of different scales of data can be seen as
an Achilles heel of ePD modeling that unless the data
are obtained from the same source, the models will
be hard to define and the associated predictions may
be less accurate. Naturally, more measured protein
concentrations in the absence and presence of a drug
in the pertinent tumor type will be useful to define the
model structure and model parameters.

Even with data-driven model building, the size of
systems based models causes parameter identifiability
problems that have been fittingly referred to as slop-
piness by Gutenkunst and coworkers31. In practical
terms this refers to the presence of multiple parameter
sets that provide equal predictability of certain model
outputs. It is important for the modeling team to
appreciate this potential limitation and recommend
additional experiments to better refine the system
when warranted; however, as these investigators
noted, rigorous experiments to constrain the system
may not be an efficient use of resources. Another
issue relevant to network model building is where do
you draw the boundaries (see Figure 1)? Since cell
signaling pathways may be viewed as interconnected
modules where do you terminate protein reactions
or continue to branch to another pathway? Which
interconnecting and feedback pathways are needed
to maintain model fidelity? These decisions relate to
model reduction and it seems that ultimately network
PD models will contain both biochemically detailed
and semi-empirical components.

Given a canonical biochemical model for a
particular cancer type, it can now be individual-
ized with additional patient data. Without protein
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Target pathway

FIGURE 1 | Hypothetical cell signaling pathways that form the basis
of an enhanced pharmacodynamic (ePD) model. Each shape is a protein
with the rectangles representing receptor tyrosine kinases within three
parallel and interconnected ‘units’. The central unit is the drug target
pathway. Should the ePD model be confined to the central unit or also
include the two other units? This idealized network illustrates a
potential problem in defining the boundaries of the model.

measurements in a specific patient and wanting a
predictive tool to design chemotherapy, one again
relies on genomic data to refine the canonical model
into a patient-based model. The same conventions
used to generate the initial protein concentrations
and reaction rates for the canonical model are now
applied using each patient’s genomic data. The resul-
tant patient-based biochemical model can now be
used in two distinct manners. First, in lieu of a set of
desired drugs, global sensitivity analyses can be com-
pleted to identify fragile nodes that can be ranked for
druggability. We have used Sobol sensitivity analyses
in this context that produces a ranked list of sensitivity
coefficients that are manually evaluated for potential
drugs18. PK models for the desired drugs are produced
from the literature information and linked to the bio-
chemical model creating a PK/ePD model. Knowledge
of the drug’s mechanisms of action is essential to
modify the biochemical reactions consistent with the
inhibitory mechanism. The PK/ePD model can now
be used as a simulation tool in different capacities
to determine drug therapy. In an agnostic manner,
a control algorithm can be applied to the PK/ePD
model to derive which drugs, doses, and frequency
of administration can be used to achieve a desired
PD goal; for example, 80% inhibition of selected
proteins. To implement this method, the controller

has to be supplied with limits of drug doses and ranges
for frequency of administration as well as target cri-
teria for optimization. For example, the fractional
inhibition of phosphorylated ERK over time could be
set as a criterion for drugs acting through the MAPK
pathway. The real power of the controller-based
approach is when designing multidrug regimens since
there can be an unwielding number of design options
to assess ‘manually’. The PK/ePD model can also be
used as a simulation tool without using sensitivity
analyses if a desired list of drugs is provided. Here
drug doses and schedules could either be varied sys-
tematically – without the use of the controller - to
define treatment regimens based on desired outcomes
or defined with the controller strategy.

A number of these ideas have been documented
in a recent paper highlighting a general design pipeline
for customized chemotherapy using the VEGFR net-
work as an example18. The design pipeline that
incorporated both the Sobol sensitivity analyses and
a controller-based algorithm to produce a PK/ePD
model output are shown in Figures 2 and 3. The
most compelling features of the drug regimens are
the non-uniform dosing schedule – no drug is admin-
istered daily – and the relatively low doses used to
achieve the target 80% inhibition of both pAKT
and pERK, two PD criteria. The model was also
used to query how common genetic abnormalities,
such as loss of PTEN or a PI3K mutation, would
influence the multidrug schedules. In each case, the
PI3K inhibitor – BKM120 – was not preferentially
selected, as would be by a genomic-centric analysis.
The controller is able to consider drug toxicity, and
in the VEGFR project, total drug doses formed a
penalty function that counterbalanced the efficacy
component based on pAKT and pERK inhibition.
One can imagine more sophisticated toxicity mod-
els that could be used in conjunction with target
organ models to quantitatively define therapeutic
windows as suggested in the cell-type specific PK/PD
modeling approach. In general, the controller-based
regimens were not intuitive and suggest this type of
model-based chemotherapy offers a fresh perspective
on dosing regimen design.

CONCLUSION

Drug development and dosage regimen design both
benefit from PK/PD analyses and models. There is an
increasing reliance on PK/PD to both preserve valuable
financial resources and expedite the drug develop-
ment pipeline. This advantage may be enhanced by
the earlier use of PK/ePD models – possibly through
the use of virtual patients – that provides a continuum
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FIGURE 2 | Pipeline to construct and utilize PK/ePD models to design multidrug regimens. The parameter estimation, sensitivity analyses and
optimization-based controller steps are distinct computational steps and can be extensive. (Reprinted with permission from Ref 18. Copyright 2014
ASCPT All rights reserved 2163-8306/12)
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FIGURE 3 | (a) Optimization-based control multidrug regimen applied to the VEGFR biochemical pathway for a 28-day cycle. The five drugs
available are shown in the legend. A relative dose of 0 is the lowest dose possible and a value of 1 the maximum defined from clinical data. (b) The
corresponding pERK and pAkt profiles expressed as the fractional response. The profiles show some adulations – particularly for pERK – but both
proteins met the 80% inhibition criteria set for the controller. (Reprinted with permission from Ref 18. Copyright 2014 ASCPT All rights reserved
2163-8306/12)

to translate preclinical findings to patients and benefit
the decision process. The rational design of anticancer
drug regimens has also made use of PK/PD models
and will likely grow as more diverse targets and
molecularly targeted agents are developed. Both stan-
dard PK/PD and newer PK/ePD models can be applied
throughout the drug development pipeline and to
patient therapy post-approval. Traditional PD models
rely on biomarkers whereas ePD models are broader
and more detailed. It is premature to favor one model-
ing technique over the other and unnecessary as each
can have complimentary roles. For instance, an initial
ePD model may identify key nodes in the system that
permit model simplification to a more manageable

biomarker type model that can be more readily
supported with patient data. At the same time, cancer
biology and drug action are sufficiently complex
that to capture these processes for each patient may
require a mechanistic ePD model. Moreover, as drug
combinations are the norm, their interactions may
not be fully assessed with simple models. Certainly
ePD models will require more data and modeller
skill to bring to fruition, and ultimately to gain
acceptance by the scientific community. Nonetheless,
their mechanistic appeal and integration with systems
biology should support a rich scientific conversation
on how such models are built and applied to both
drug development and dosage regimen design.
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