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Analytical reduction of combinatorial
complexity arising from multiple
protein modification sites

Marc R. Birtwistle

Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai,
One Gustave L. Levy Place, New York, NY 10029, USA

Combinatorial complexity is a major obstacle to ordinary differential equation

(ODE) modelling of biochemical networks. For example, a protein with 10 sites

that can each be unphosphorylated, phosphorylated or bound to adaptor

protein requires 310 ODEs. This problem is often dealt with by making

ad hoc assumptions which have unclear validity and disallow modelling of

site-specific dynamics. Such site-specific dynamics, however, are important

in many biological systems. We show here that for a common biological situ-

ation where adaptors bind modified sites, binding is slow relative to

modification/demodification, and binding to one modified site hinders bind-

ing to other sites, for a protein with n modification sites and m adaptor proteins

the number of ODEs needed to simulate the site-specific dynamics of biologi-

cally relevant, lumped bound adaptor states is independent of the number of

modification sites and equal to m þ 1, giving a significant reduction in system

size. These considerations can be relaxed considerably while retaining reason-

ably accurate descriptions of the true system dynamics. We apply the theory to

model, using only 11 ODEs, the dynamics of ligand-induced phosphorylation

of nine tyrosines on epidermal growth factor receptor (EGFR) and primary

recruitment of six signalling proteins (Grb2, PI3K, PLCg1, SHP2, RasA1 and

Shc1). The model quantitatively accounts for experimentally determined

site-specific phosphorylation and dephosphorylation rates, differential affi-

nities of binding proteins for the phosphorylated sites and binding protein

expression levels. Analysis suggests that local concentration of site-specific

phosphatases such as SHP2 in membrane subdomains by a factor of approxi-

mately 107 is critical for effective site-specific regulation. We further show how

our framework can be extended with minimal effort to consider binding coop-

erativity between Grb2 and c-Cbl, which is important for receptor trafficking.

Our theory has potentially broad application to reduce combinatorial com-

plexity and allow practical simulation of a variety ODE models relevant to

systems biology and pharmacology applications to allow exploration of key

aspects of complexity that control signal flux.
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1. Introduction
Biochemical networks are bewilderingly complex. One look at a comprehensive

view of metabolic pathways or signalling networks [1,2] leaves one with a sense

that predicting their behaviour requires more than intuition and an illustration.

Yet, advances in metabolic engineering and systems pharmacology depend on

our ability to make such predictions. Thus, many see progression of these and

similar fields as depending on our ability to build mathematical, computational

representations of relevant biochemical networks, which can subsequently be

used to predict their behaviour.

Because biochemical networks, on a basic level, are simply a collection of

coupled chemical reactions, one can model their behaviour with differential

equation-based chemical kinetics approaches [3,4]. One fundamental but

common roadblock to theoretically precise implementation of such approaches

is ‘combinatorial complexity’ [5–7]. Combinatorial complexity arises when
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network entities have several sites that can each be in several

states. For example, a protein that contains 10 phosphorylation

sites, each of which can be unphosphorylated, phosphoryla-

ted or non-competitively bound to a downstream adaptor,

leads to 310 (approx. 59 000) unique chemical species. A typical

approach to avoid this combinatorial complexity is arbitrarily

lumping sites together [3,8,9], but the validity and conse-

quences of such approaches are unclear. Importantly, such

reduction approaches result in the inability to track site-specific

phenomena, such as differential phosphorylation and depho-

sphorylation rates on different sites of the same protein.

Such site-specific phenomena can have important biological

impact. For example, the phosphatase SHP2 dephosphorylates

only particular phosphotyrosines on receptor tyrosine kinases

that are important for controlling Ras deactivation [10]. This is

noteworthy as constitutive Ras activation drives progression of

numerous cancer types [11]. On the epidermal growth factor

receptor (EGFR), phosphorylation of Y1068 is correlated with

longer survival in non-small cell lung cancer patients, whereas

phosphorylation of Y1173 is correlated with shorter survival

[12]. There are multiple proteins, such as Grb2, PI3K, SHP2,

PLCg1, RasA1 (p120RasGAP) and Shc1, which bind to these

and the other approximately 10 tyrosine phosphorylation

sites on EGFR in both unique and overlapping manners

with varying affinities [13]. The relative recruitment levels of

these various proteins determine the strength of downstream

signalling to pathways such as Akt, ERK or PKC, which sub-

sequently dictate biological responses such as proliferation,

migration, differentiation or apoptosis [14]. However, predict-

ing the recruitment levels of these binding proteins without

considering site-specific effects, and therefore combinatorial

complexity, is challenging: each EGFR tyrosine is phosphory-

lated at different rates [15], and the host of binding proteins

has distinct affinities for the various EGFR phosphotyrosines

[13] as well as different expression levels [16].

Incorporating tens of thousands or even millions of dif-

ferential equations into a model to account for all these

site-specific phenomena in a theoretically precise manner is

problematic for several reasons. One is writing the code necess-

ary to simulate so many differential equations. However,

rule-based modelling specification languages (e.g. BioNetGen

[17,18] and Kappa [19]) allow one to write a small number

of reaction rules that are then used to automatically build

a set of differential equations, providing the tools necessary

to tackle this code-writing problem. Theory that detects inde-

pendence between sites and states also allows one to reduce

combinatorial complexity in a rigorous manner [19–23],

but interactions are common and block reduction through

such means. Another problem, which rule-based approaches

cannot solve, is practical numerical integration of that many

differential equations. This is particularly the case consider-

ing that the model must be integrated not a single time, but

many times over to be useful for routine tasks such as par-

ameter estimation and sensitivity analysis. One potential

solution is incorporating kinetic Monte Carlo approaches into

a rule-based framework for so-called network-free simulation

[24,25]. Such approaches do not enumerate all potential states

a priori, but rather let initial conditions of the network stochas-

tically propagate into realized states. Yet, such approaches are

also computationally intensive for relatively small networks,

require specialized software and code (whereas differential

equation solvers are widely available and easy to use) and

may be difficult to programmatically couple with other
models (which are likely to be differential equation-based).

Recently, powerful theoretical approaches have been devel-

oped that allow one to calculate steady-state behaviour of

biochemical networks without having to consider combina-

torial complexity [26–29]. Yet, this theory has limitations

that preclude its wide application to practical simulation of sev-

eral systems: (i) enzymes cannot act as substrates, but it is

common for signalling network proteins to be both; (ii) there

is limited ability to model feedback, but various forms of feed-

back are central to shaping signalling network control of cell

fate [14,30], and (iii) in many situations, signalling dynamics,

rather than steady-state behaviour, control biological responses

[30,31]. Therefore, a theory that can reduce combinatorial com-

plexity yet retain both the use of differential equations and the

ability to describe these important network features may have

widespread usefulness.

Here, we provide analytical equations that allow one to

reduce combinatorial complexity for a biological scenario that

is common to a variety of systems: a protein such as a receptor

has multiple modification sites that bind to downstream

adaptors, the adaptors sterically hinder each other from simul-

taneous binding and the modification/demodification kinetics

are fast relative to downstream adaptor recruitment. We show

that the size of a reduced system which tracks the biologi-

cally relevant levels of total recruited adaptor protein and

models site-specific phenomena does not depend on the number
of modification sites, allowing for significant reduction in combi-

natorial complexity. Predictions of this theory are shown to

match well to non-reduced system simulations over a wide

range of kinetic parameters, and finally we demonstrate how

the theory can be applied to model site-specific EGF-induced

signalling through EGFR.
2. Results and discussion
2.1. General modelled system and assumptions
The theory developed in this manuscript considers any protein

or stable protein complex having multiple sites that can each

be modified and demodified, and then the modified form of

this site binds to a downstream protein. Modifications may

include, for example, phosphorylation, or anyother post-transla-

tional modification. The theory allows for bound proteins to alter

the modification and demodification rates in a site-specific

manner. This overall scenario is common in signalling networks.

Specifically, we assume the following conditions hold

(1) Adaptor binding is slow relative to modification/

demodification cycles, such that these cycles reach

quasi-equilibrium.

(2) The modification sites are located in close physical proxi-

mity to one another relative to the size of the adaptors,

such that adaptor binding to one site hinders binding

events on other sites.

(3) Binding of adaptor j occurs with rate constants konj

and koffj to one or more modified sites. The assumption

simplifies the initial derivation and can be relaxed

to allow different on rate constants as indicated later in

the manuscript.

(4) Modification and demodification of site i occur as effec-

tive first-order processes with rate constants kfi and kri

when adaptor is not bound.

http://rsif.royalsocietypublishing.org/
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Figure 1. Kinetic schemes for two-site models. For each scheme, protein states are represented as an ordered pair, with the state of site 1 as the first element and
the state of site 2 and the second element. 0 denotes unmodified, 1 denotes modified and 2 denotes bound. When different adaptors can bind to the same site (as
in c), the subscript denotes the bound adaptor. Transitions between states are denoted with arrows, and these transitions occur with the pictured rate constants.
States comprising bound adaptor A are denoted as [2A] with large enclosing dashes, whereas those comprising bound adaptor B are denoted as [2B] with small
enclosing dashes. (a) Adaptor A binds to site 1 and adaptor B binds to site 2 in a mutually exclusive fashion. (b) Adaptor A binds to site 1 and site 2, but not at the
same time. (c) Adaptor A and adaptor B compete for binding to site 1 and site 2 in a mutually exclusive fashion.
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2.2. A simple two-site scenario
We first consider a simple scenario, where a protein has two

sites, site 1 and site 2, which bind adaptors A and B, respect-

ively (figure 1a). The states of the protein’s sites are described

by an ordered pair, where the first position corresponds to

the state of site 1 and the second position corresponds

to the state of site 2, 0 denotes unmodified, 1 denotes modi-

fied and 2 denotes bound to adaptor. Completely unmodified

protein (0, 0) can be modified on any site in any order, modi-

fied site 1 can bind to adaptor A, and modified site 2 can bind

to adaptor B. Because we assume that the sites are in close

proximity and bound adaptor sterically hinders access to

other sites, we do not consider that enzymes can access any

site when adaptor is bound (e.g. (2, 1) cannot go to (2, 0)

and vice versa). However, whether these processes are

allowed or not has no bearing on the results of the theory

derived in this manuscript.

Many systems function by modulating modified site levels

to recruit proteins which subsequently turn on signalling

cascades to enact biological function. Thus, the total lumped

level of recruited protein is often of biological significance.
In ErbB receptor signalling, for example, the recruited proteins

SOS, PI-3K and PLCg turn on the pathways for ERK, Akt and

PKC, respectively, subsequently affecting cellular processes.

We seek to derive expressions for the total, lumped amount

of protein recruitment, while retaining the ability to capture,

mechanistically, the effects of site-specific phosphorylation

and/or dephosphorylation, differential binding affinities and

varying protein expression levels on such recruitment. This

lumping of recruitment is depicted in figure 1a by dashed rec-

tangles, with [2A] representing the total amount of bound

adaptor A, and likewise with [2B]. Thus, overall, we seek a

reduced representation for the dynamics of [2A] and [2B].

These differential equations are given as

d[2A]

dt
¼ konA[(1, 0)þ (1, 1)][BA]� koffA[2A] (2:1)

and

d[2B]

dt
¼ konB[(0, 1)þ (1, 1)][BB]� koffB[2B], (2:2)

where [BA] and [BB] represent the bulk concentrations of

adaptors A and B, respectively. The quantity [(1, 0) þ (1, 1)]

http://rsif.royalsocietypublishing.org/
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represents the total concentration of modified site 1, and

[(0, 1) þ (1, 1)] the same for site 2. From equations (2.1)

and (2.2), it is clear that if we can represent [(1, 0) þ (1, 1)]

and [(0, 1) þ (1, 1)] in terms of a common variable, then we

may be able to close the system and negate the need to track

the dynamics of each protein ‘microstate’.

Consider now assumption 1 above, which states that

modification cycles are in quasi-equilibrium. For the first site,

this gives

kf1

kr1
¼ (1, 0)

(0, 0)
) (1, 0) ¼ kf1

kr1
(0, 0): (2:3)

Likewise, we can also obtain

(0, 1) ¼ kf2

kr2
(0, 0);

kf2

kr2
¼ (1, 1)

(1, 0)
) (1, 1) ¼ kf1kf2

kr1kr2
(0, 0): (2:4)

Following this approach and substituting into equations (2.1)

and (2.2), we obtain

d[2A]

dt
¼ konA

k f1

kr1
þ kf1kf2

kr1kr2

� �
(0, 0)[BA]� koffA[2A] (2:5)

and

d[2B]

dt
¼ konB

kf2

kr2
þ kf1kf2

kr1kr2

� �
(0, 0)[BB]� koffB[2B]: (2:6)

Now, only five variables appear in these equations: the two

lumped states ([2A] and [2B]), the two free adaptor concen-

trations and the amount of completely unmodified protein (0,

0). It is trivial to write the differential equations for the free

adaptor concentrations based on species balances

d[BA]

dt
¼ �d[2A]

dt
;

d[BB]

dt
¼ �d[2B]

dt
: (2:7)

To close the system and obtain an exact reduced description

for the lumped states, we must now represent the differential

equation for (0, 0) in terms of only modelled quantities, [2A]

and [2B]. Based on overall protein species balance, we have

�d[(1, 0)þ (1, 1)þ (0, 1)þ (0, 0)]

dt
¼ d[2A]

dt
þ d[2B]

dt
: (2:8)

Substituting in quasi-equilibrium relationships (equations

(2.3) and (2.4)), we obtain

�d
kf1

kr1
(0, 0)þ kf1kf2

kr1kr2
(0, 0)þ kf2

kr2
(0, 0)þ (0, 0)

� �
=dt¼d[2A]

dt
þd[2B]

dt

d(0, 0)

dt
kf1

kr1
þ kf1kf2

kr1kr2
þ kf2

kr2
þ1

� �
¼� d[2A]

dt
þd[2B]

dt

� �

d(0, 0)

dt
¼�a[konAb1(0, 0)[BA]�koffA[2A]

þ konBb2(0, 0)[BB]�koffB[2B]], ð2:9Þ

where

1

a
;

kf1

kr1
þ kf1kf2

kr1kr2
þ kf2

kr2
þ 1

� �
; b1 ;

k f1

kr1
þ kf1kf2

kr1kr2
;

b2 ;
k f2

kr2
þ kf1kf2

kr1kr2
:

(2:10)

Thus, given the above assumptions, the reduced system can

be described exactly by a set of three differential equa-

tions, none of which depends explicitly on the modification

site states.
2.3. Two-sites, one adaptor
Now, consider the case when a single adaptor A binds to

both site 1 and site 2 (figure 1b). In this case, we have

[2A] ; [(2, 0)þ (2, 1)þ (0, 2)þ (1, 2)]

d[2A]

dt
¼ konA[(0, 1)þ (1, 0)þ 2�(1, 1)][BA]� koffA[2A]: (2:11)

Note here the coefficient of two prior to the (1, 1) state, indicating

that adaptor A can bind to either modification site, doubling the

concentration-driving force. Similar to above, by substituting in

the quasi-equilibrium relationships, we obtain

d[2A]

dt
¼ konA

kf1

kr1
þ kf2

kr2
þ 2

kf1kf2

kr1kr2

� �
(0, 0)[BA]� koffA[2A]

¼ konA[b1 þ b2](0, 0)[BA]� koffA[2A] (2:12)

and

d(0, 0)

dt
¼ �a[konA[b1 þ b2](0, 0)[BA]� koffA[2A]]: (2:13)

Here, b1 and b2 are defined as above in equation (2.10). Thus, in

this case, this system can be reduced even further, needing only

one state for the single lumped adaptor and one for the total

amount of unmodified protein.

2.4. Two sites, two adaptors, overlapping binding
Now, we consider a slightly more complex scenario where

the two adaptors A and B may both bind to sites 1 and 2,

competing with each other (figure 1c). Because different

adaptors may be bound to the same site, we clarify this ambi-

guity by denoting adaptor identities in the schematic with a

subscript (i.e. 2A and 2B). The lumped bound adaptor states

and differential equations are given by

[2A] ; [(2A, 0)þ (2A, 1)þ (0, 2A)þ (1, 2A)]

d[2A]

dt
¼ konA[(0, 1)þ (1, 0)þ 2�(1, 1)][BA]� koffA[2A] (2:14)

and

[2B] ; [(2B, 0)þ (2B, 1)þ (0, 2B)þ (1, 2B)]

d[2B]

dt
¼ konB[(0, 1)þ (1, 0)þ 2�(1, 1)][BB]� koffB[2B]: (2:15)

As above, the modified, unbound protein states can be recast

through quasi-equilibrium relationships (equations (2.3) and

(2.4)) which give

d[2A]

dt
¼ konA

k f1

kr1
þ k f2

kr2
þ 2

k f1kf2

kr1kr2

� �
(0, 0)[BA]� koffA[2A]

¼ konA[b1 þ b2](0, 0)[BA]� koffA[2A]c (2:16)

and

d[2B]

dt
¼ konB

kf1

kr1
þ kf2

kr2
þ 2

kf1kf2

kr1kr2

� �
(0, 0)[BB]� koffB[2B]

¼ konB[b1 þ b2](0, 0)[BB]� koffB[2B]: (2:17)

Again, the b factors are as defined in equation (2.10). Follow-

ing equations (2.8)–(2.10) for the dynamics of the (0, 0) state,

we obtain

d(0, 0)

dt
¼ �a[konA[b1 þ b2](0, 0)[BA]� koffA[2A]

þ konB[b1 þ b2](0, 0)[BB]� koffB[2B]]: (2:18)

Thus, just as above, the system can be reduced in a similar

manner, and the dynamics of lumped adaptor states can be

exactly described with only three equations.

http://rsif.royalsocietypublishing.org/
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Because next we will derive the results for a system of

general size, it is instructive at this point to rehash the general

procedure we have used in these different scenarios to derive

an exact reduction of the system dynamics in terms of

lumped adaptor states:

(1) define lumped, bound states for each adaptor and specify

their differential equations;

(2) use quasi-equilibrium relationships to represent the

concentration-driving force for adaptor binding to modi-

fied proteins in terms of the concentration of completely

unmodified protein; and

(3) use overall species balance and quasi-equilibrium

relationships to derive the differential equation for

completely unmodified protein.

Next, we follow this procedure to derive equations for the

general situation.
20141215
2.5. A protein with n sites and m adaptors
Based on the above analysis of various two-site, two-adaptor

systems, we now consider the general case when there are n
modification sites and m adaptors. First, we present some

definitions:

(1) let [2j] denote the summation over all states that have

adaptor j bound, where j [ {1, 2, . . . , m};

(2) let [0] be the state where all n sites are unmodified;

(3) let bi denote the summation over all states that have site

i modified (i [ {1, 2, . . . , n}), but are not bound to

adaptor on any other site. As in equation (2.10), the bs

are cast in terms of quasi-equilibrium relations with [0]

factored out;

(4) let dij be an indicator variable, taking the value of 1 if

adaptor j binds to site i, and 0 otherwise; and

(5) let 1/a denote the summation over all unbound protein

states. As in equation (2.10), it is written in terms of

quasi-equilibrium relations with [0] factored out.

Given these definitions, the differential equation for the

lumped state for adaptor j [2j] is

db2jc
dt
¼ konj[Bj][0]

Xn

i¼1

bidij � koffj[2j]: (2:19)

The term [0]
Pn

i¼1 bidij quantifies the total concentration of

modified proteins that adaptor j is able to bind, and assump-

tion 2 above allows us to neglect any bound states from this

term. The summation adds up concentrations of only those

modified sites where adaptor j is able to bind (‘filtered’

by the indicator variable). We also note that is possible to

relax assumption 3 for on rate constants by incorporating

them inside the summation, into the indicator variables.

Before writing the expression for the b factors, recall from

above (equations (2.3) and (2.4)) that based on quasi-

equilibrium relationships, in general, the concentration of a

protein with modified sites given by indices in the set X,

CX, is given by

CX ¼ [0] P
n

i¼1;i[X

kfi

kri
: (2:20)

Now, for ease of notation, let Ki ; kfi=kri. As an exam-

ple, for a five-site system and X ¼ [1,3,5], we would have
Cx ¼ [0]K1K3K5. Given equation (2.20), the b factors (see

definition 4) are given by the following

bi¼Ki 1þ
Xn

q¼1;q=i

KqþKq

Xn

r¼qþ1;r=i

Krþ�� �þKy

Xn

z¼n;z=i

Kz

" #2
4

3
5

2
4

3
5:

(2:21)

Equation (2.21) iterates over all potential combinations of

modified protein states where site i is modified. The constant

factor Ki in front dictates that site i must be modified. The

first summation accounts for all doubly modified states, the

second summation for all triply modified states, and so on.

There are a total of n 2 1 nested summations; the index z on

the last summation has a value of n in the first complete loop

through all the summations and therefore executes only once,

accounting for the state where every site is modified.

The differential equation for the [0] state is, as above,

given by overall species balance

d[0]

dt
¼ �a

Xm

j¼1

db2jc
dt

, (2:22)

where the a factor (see Definition 5) is defined by

1

a
; 1

þ
Xn

q¼1

KqþKq

Xn

r¼qþ1

KrþKr

Xn

s¼rþ1

Ksþ�� �þKy

Xn

z¼n
Kz

" #" #2
4

3
5:

(2:23)

Equation (2.23) gives all potential combinations of modified

sites. Here, there are n nested summations. The first summa-

tion corresponds to states having only a single site modified,

and second summation corresponds to states having any

two sites modified and so on. Similar to above, the index z
corresponding to the last summation has a value of n in the

first loop through, and it therefore executes only once and

corresponds to the state where all sites are modified.

From this analysis, it can be seen that when the aforemen-

tioned assumptions apply, the number of species needed to

describe the lumped dynamics of bound adaptor states exactly

is m þ 1 (one for each lumped adaptor state and one for

the totally unmodified protein), and does not depend on the

number of modification sites n. Thus, by applying these

assumptions, one can side step the combinatorial explosion of

potential states arising from multiple modification sites, while

still retaining the ability to model effects of site-specific

phenomena accurately.
2.6. Comparison of theory with simulations
The abovementioned equations dictate the dynamics of a

reduced system assuming the specified conditions hold exactly.

However, in practice, these conditions do not hold exactly; they

only hold to an approximation. Under what conditions do theor-

etical predictions match exact simulations? Here, we perform

simulation studies to answer these questions with a BioNetGen

model of a 10-site receptor with four binding proteins that fully

considers combinatorial complexity (see Material and methods

and figure 2a). This model contains 6148 ODEs.

First, we investigated how the main assumption of

time-scale separation between modification/demodification

rates and binding on rates affected the agreement between
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Figure 2. Comparing theory to a combinatorially complex 10-site model. (a) Simplified cartoon schematic of the 10-site model. Ten modification sites (denoted by
yellow circles) can bind to four different proteins (labelled a – d). Arrows to sites denote allowed binding events. (b) Comparison of BioNetGen-based simulations of
the full model (blue x’s) to theoretical predictions (black lines) for various time-scale differences between modification and binding on rate constants. Parameter
values are indicated to the left of the plots and in materials and methods. (c) Comparison for a host of parameter variations, as indicated by text to the left of the
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BioNetGen simulations and our theory (figure 2b—first three

rows). Here, binder levels and affinities are taken as equal for

clarity of presentation (they are altered directly below). When

there was a 100-fold or greater difference between modification

rate constants and the binding on-rate, the agreement between

our theory (black lines) and BioNetGen-based ODE simulations
(blue x’s) was excellent. When the difference was 10-fold,

discrepancies between theory and simulation were observed,

although they disappeared as the system reached steady-state.

Thus, our theory may also be applicable in such scenarios so

long as discrepancies occurring on the order of 1 min are not

a concern. Many meaningful biological changes occur over

http://rsif.royalsocietypublishing.org/
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much longer timescales (hours), so such discrepancies may in

fact be quite tolerable, and worth the trade-off for model

reduction capacity provided by our theory.

We further challenged our theory to account for a number

of biologically plausible scenarios (figure 2c): changing binder

concentrations (first row); changing on and off rate constants

for binders (second row); changing site-specific modification

rate constants (third and fourth row) and changing the binding

stoichiometry (fifth row—d matrix). In each case, predic-

tions from our theory match well to simulations from the full

combinatorial complexity model. Thus, over a wide range of

conditions, our theory was able to reduce the dimension

of the system from 6148 to five independent ODEs, over a

103-fold reduction. Further reduction is possible, if a larger

combinatorially complex model is considered.

2.7. Applying the theory to model ligand-induced
epidermal growth factor receptor activation

Here, we show how our theory can be applied to a practical

scenario where EGF binds to the EGFR, causing signalling

through asymmetric dimers (figure 3a) [32]. Before proceeding,

however, we must evaluate whether the four assumptions

underlying our theory may reasonably apply to the EGFR

system. This analysis of assumptions is presented in the elec-

tronic supplementary material. Although there are certainly

some potential deviations from the assumptions in a strict

sense, in many respects, we conclude that they may reasonably

apply to the EGFR system. One significant deviation is the

cooperative recruitment of the E3 ubiquitin ligase c-Cbl to

the EGFR, depending on the presence of Grb2 [33]. The

theory as developed above does not allow for such a possibility,

but we derive a special case here that allows us to introduce

this feature without considering the full array combinatorial

complexity. The derivation is also shown in the electronic sup-

plementary material, and our simulation analysis of this

scenario is presented below.

2.7.1. Choosing tyrosine phosphorylation sites, binders and rate
constant parameters

There are multiple potential tyrosine phosphorylation sites on

EGFR and many different proteins which can bind to their

phosphorylated form. We limited ourselves to EGFR tyrosines

that are that are C-terminal to the kinase domain or reasonably

close to it, eliminating tyrosines N-terminal of Y920, yielding

nine sites (table 1). To reduce the number of potential binding

proteins, we relied on two sets of experimental data. First, we

required that binding proteins have less than a 3 mM Kd to

any EGFR tyrosine phosphorylation site [13]. Second, we

required that binding proteins have detectable concentrations

as measured in NIH3T3 cells [16]. This resulted in six binding

proteins—Grb2, PI3K (PIK3R1—we assume the SH2 domain

containing regulatory subunit controls levels of the complete

PI3K complex), PLCg1, SHP2 (PTPN11), RasA1 (p120 RasGT-

Pase activating protein) and Shc1, each with known expression

levels and unique dissociation constants for the considered

phosphotyrosines (table 1). Taking koff ¼ 0.1 s21 (see the elec-

tronic supplementary material) gives the kons. Site-specific

kinase catalytic constants were previously measured [34],

and we assumed kf ¼ 0.17 s21 if no site-specific data were avail-

able (table 1). First-order phosphatase rate constants were

taken as 0.1 s21 [35].
2.7.2. Simulating epidermal growth factor-induced primary
binding responses

With the model specified based on a variety of experimental

data as detailed above, we could now perform simulations

of EGF-induced binding of these six proteins to the variety of

EGFR phosphotyrosines. We compared the predictions of our

reduced model theory, which consists of only 11 independent

ODEs, to simulations using NFsim accounting for combinatorial

complexity [24] (our computers ran out of memory when trying

to generate the network with BioNetGen and perform ODE

simulations). Our reduced model predictions for the dynamics

of primary binder recruitment to EGF match well to NFsim

results (figure 3b—first two rows). There is some discrepancy

between our theory and NFsim results for the completely

dephosphorylated receptor state at short times. We suspect

this discrepancy is mainly due to the time required for newly

formed receptor dimers to reach a phosphorylation equilibrium,

which our theory treats as instantaneous. Grb2 and Shc1 are pre-

dicted to be the predominant primary binding proteins, with the

others having recruitment levels approximately an order of

magnitude lower. Interestingly, the mechanism by which

Grb2 and Shc1 are the predominant binders are predicted

to be different based on table 1. Shc1 has moderate abun-

dance but high affinity for many sites, whereas Grb2 has high

abundance which makes up for its low affinity to a single site.

2.7.3. Analysis of SHP2
Previous models have elucidated mechanisms of site-specific

signalling by SHP2 in a variety of systems [36–38]. It has been

shown that SHP2 has activity specifically towards Y992 on

EGFR [39,40]. We simulated this situation by allowing SHP2-

bound states to exhibit phosphatase activity towards pY992

(figure 3b, third row), which predicted that recruitment of

RasA1, a RasGAP that turns off the ERK pathway, would be

inhibited. This is functionally similar to simulated effects of a

Y992F mutation (figure 3b—fourth row). These simulation

results are consistent with previous experimental studies on

both scenarios, in that SHP2 is needed for activation of the

ERK pathway [39,41,42], and that expression of the Y992F

EGFR mutant leads to sustained EGF-induced ERK activity [43].

We found that the catalytic efficiency (kcat/Km) for SHP2

had to be on the order of 100 s21 nM21 to have an appreci-

able effect on site-specific phosphorylation levels (results

in figure 3b are for 1000 s21 nM21). This is a remarkable

seven orders of magnitude higher than reported values of

1025 s21 nM21 [44]. Perhaps, in vivo phosphatase activation

processes play a role, but because the reported kcats for

these phosphatases are already quite high (approx. 10 s21),

such mechanisms are unlikely to explain the entire effect.

Another possibility is local concentration of the receptor-

phosphatase complex with its phosphorylated substrates. If

one simply considers concentration of the phosphatase at

the plasma membrane and 100 nm of cytoplasm associated

with it, one obtains a 60-fold increase in effective concen-

tration (assuming a 20 mm cell diameter and 2000 mm3 cell

volume). Because this factor would apply to both phos-

phatase and its substrate, these factors multiply to give a

3600-fold increase (60 � 60) in reaction rate. Even further

concentration within membrane microdomains such as

clathrin-coated pits is known to occur for many RTK sys-

tems [45]. It is estimated that clathrin-coated pits account

for approximately 2% of the plasma membrane area [46].
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Table 1. Parameters for the EGFR model. Abundances for each protein in the model are listed at the bottom, and phosphorylation rate constant parameters for
each site are listed on the left. Site-specific parameters for protein binding to phosphotyrosine are given in the centre (Kd ¼ koff/kon).

kcat (min21) EGFR Grb2 PI3K PLCg1 SHP2 RasA1 Shc1

tyrosine sites Kd (mM)

10 920 0.07 1.41 0.69 2.31

10 954 0.51

10 974 2.84

14.4 992 2.4 1.93 1.1

17.4 1068 2.6

17.2 1086 0.41

12.9 1114

13.1 1148 0.07

15.1 1173 1.42

abundance (nM)a 7.05 4.58 4.97 4.43 66.6 19.4 31.3
aBased on a 2000 mm3 cell.
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Taking this further concentration factor into account for

phosphatase and substrate (50 � 50) yields the approximately

107-fold increase in effective reaction rate needed for site-

specific dephosphorylation to have appreciable effects on

phosphorylated receptor levels. Thus, these modelling results

suggest that local concentration of phosphatase with phos-

phorylated receptors in plasma membrane subdomains is a

key feature of site-specific dephosphorylation.

2.7.4. Refining the model for analysis of Grb2 – cCbl cooperativity
A recent study has shown that cCbl is cooperatively recruited to

EGFR as EGF dose is increased, and that this cooperativity is

dependent on Grb2 and the presence of the recruitment sites

for both Grb2 (Y1068) and cCbl (Y1045) [33]. It was suggested

that this effect may be due to cooperativity on the level of the

phosphorylation sites themselves, implying that a Grb2–cCbl

complex may bind cooperativity to EGFR, because Y1045

and Y1068 are more likely to be phosphorylated together. We

extended our theory to accommodate such coopera-

tive behaviour by adding Y1045, cCbl, and the Grb2–cCbl

complex to the model (see the electronic supplementary

material), which resulted in only a slight increase of model com-

plexity (21 states). We assumed that cCbl alone could bind to

phoshphorylated Y1045 with similar affinity as Grb2 for its

site, and the Grb2–cCbl complex could bind to receptors

having both Y1045 and Y1068 phosphorylated, with 100-fold

greater affinity than either protein alone. To accomplish

this, we created a new site that takes into account the simul-

taneous phosphorylation states of Y1045 and Y1068 while still

using our model reduction assumptions (see the electronic

supplementary material). Using this extended model, we per-

formed simulations to explore whether these assumptions

could reproduce the cooperative behaviour in cCbl binding to

EGFR observed [33]. Surprisingly, we found that there was no

predicted difference in recruitment of Grb2 or cCbl as a function

of EGF dose (figure 3c), despite the higher affinity of the Grb2–

cCbl complex and the reliance on two sites to be simultaneously

phosphorylated. Thus, more complex mechanisms, such as

ordered cooperative binding of Grb2 and cCbl to pY1045/

pY1068, or increased phosphorylation of one of these sites as

a result of phosphorylation of the other, may be needed to

explain the observed cCbl dose responses.
3. Conclusion
Combinatorial complexity can cripple mechanistic modelling of

signal transduction. Here, we show that given assumptions

which may be biologically plausible, the dynamics of bio-

logically relevant lumped adaptor states do not depend on the

number of modification sites, eliminating combinatorial com-

plexity when such assumptions are satisfied, while still

describing the effects of site-specific phenomena. It may apply

to, for example, RTK and histone modification systems. Yet, it

is important to note that regulatory complexity, which is defined

as the large number of parameters required to model such sys-

tems, remains a problem that is not addressed by the current

theory but rather by other recently published approaches [47].

We demonstrate numerically that our theory for describing a

reduced system of lumped adaptor states provides predictions

which match well to the true system dynamics. This correspon-

dence is maintained over a wide range of parameter values, the

edge of which comes remarkably close to violating the theory’s

main assumptions, but without significant deviation between

reduced and full model simulation results. Importantly, existing

data suggest that our theory is applicable to the EGFR system,

and we demonstrate how to apply it, even when the non-coop-

erative binding assumption must be relaxed for Grb2–cCbl

interactions. Analysis of our EGFR model suggests that site-

specific tyrosine dephosphorylation may only be possible by

concentrating phosphatases with their substrates by a surprising

107-fold, which may be possible with membrane microdomain

signalling. Wide application of this theory may allow for practi-

cal simulation of large biochemical networks that otherwise

would not be feasible to explore key aspects of receptor

signalling complexity in a succinct manner.
4. Material and methods
4.1. Simulation of the full 10-site model
BioNetGen (v. 2.2.2) was used to generate and simulate the ODEs

for the full 10 site model described in figure 2, and MATLAB

(R2013a, The Mathworks, Natick, MA) with ode15s was used

to apply our theory. Unless otherwise specified as in figure 2

legend, initial concentrations of receptor and free binding pro-

teins were 10 nM, modification rate constants were 1 s21, and
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binder on and off rates were 0.001 s21 nM21 and 0.1 s21, respect-

ively. The BNGL file associated with this model is given in the

electronic supplementary mateial, text 1, and MATLAB code is

provided in the electronic supplementary material.
 alsocietypublishing.org
J.R.Soc.Interface

12:2
4.2. Simulation of the ligand-induced signalling model
BioNetGen (v. 2.2.2) was used to specify the reaction rules for the

ligand-induced EGFR model and NFsim (v. 1.11) was used for

simulation. Ligand binding on and off rates was both 0.01

(s21 nM21 and s21) and dimerization on and off rates were

0.01 s21 nM21 and 0.001 s21. The BNGL file associated with

this model is given in the electronic supplementary material,

text 2, and MATLAB code is given in the electronic supplemen-

tary material. We assumed that newly formed receptor dimers

would be completely unphosphorylated, but according to

assumption 1, be rapidly converted to the equilibrium between

phosphorylated and unphosphorylated receptor states. More-

over, in equation (2.10), the first-order kinase and phosphatase
rate constants were time-invariant; however, here they may

change over time. Given these considerations, we have

d[0]

dt
¼ �a

Xm

j¼1

d[2j]

dt
� dDT

dt

2
4

3
5� [0]

d ln (1=a)

dt
, (4:1)

where DT is the total concentration of active receptor dimers

(figure 3a), which changes as a result of ligand binding and receptor

dimerization processes. Because we had to track dynamics of the par-

ameter a, we used ode45 in MATLAB (R2013a) to integrate the

ODEs. This allowed us to keep track of a-values between time

steps numerically in a straightforward manner. Such tracking could

potentially be accomplished with ode15s but would require more

complex coding, because it is a variable-time step, iterative solver.
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