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Dimerization-based control of cooperativity†

Mehdi Bouhaddou and Marc R. Birtwistle*

Cooperativity of ligand–receptor binding influences the input–output behavior of a biochemical system

and thus is an important determinant of its physiological function. Canonically, such cooperativity is

understood in terms of ligand–receptor binding affinity, where an initial binding event changes the affinity

for subsequent binding events. Here, we demonstrate that dimerization—a simple yet pervasive signaling

motif across biology—can have significant control over cooperativity and even dominate over the

canonical mechanism. Through an exhaustive parameter sensitivity analysis of a general kinetic model for

signal-mediated dimerization, we show that quantitative modulation of dimerization processes can

reinforce, eliminate, and even reverse cooperativity imposed by the canonical allosteric ligand–receptor

binding affinity mechanism. The favored accumulation of stoichiometrically asymmetric dimers (those with

ligand–receptor stoichiometry of 1 : 2) is a major determinant of dimerization-based cooperativity control.

However, simulations demonstrate that favoring accumulation of such stoichiometrically asymmetric

dimers can either increase or decrease cooperativity, and thus the quantitative relationship between

stoichiometrically asymmetric dimers and cooperativity is highly dependent on the parameter values of the

particular system of interest. These results suggest that the dimerization motif provides a novel

mechanism for both generating and quantitatively tuning cooperativity that, due to the ubiquity of

dimerization motifs in biochemical systems, may play a major role in a host of biological functions. Thus,

the canonical, allosteric view of cooperativity is incomplete without considering dimerization effects,

which is of particular importance as dimerization is often a necessary feature of the allosteric mechanism.

Introduction

Protein dimerization is ubiquitous in nature and is essential to
numerous cellular and physiological functions. It is estimated that
approximately two-thirds of known proteins form dimers or higher-
order oligomers,1 and that the dimer interface of many dimerizing
proteins is more highly conserved than the rest of the protein
surface,2 highlighting the importance of dimerization in numerous
biochemical systems. In general, dimerization can endow proteins
and biochemical systems with important advantages, such as
increased stability, specificity, and complexity.3 For instance, dimeri-
zation can induce the formation of an active site that is not present
in the singular monomer, which has been observed for numerous
caspases, such as Caspase 9.4 Combinatorial specificity can be
achieved when monomers can mix-and-match to generate a unique
signal from each combination; for example, the E. coli protein BirA
can act either as an essential metabolic enzyme or a transcrip-
tional repressor, depending on the adaptor molecules to which

it is bound.5 In addition, dimerization can mediate allosteric regu-
lation between binding sites by facilitating conformational changes
(e.g. oxygen–hemoglobin6–12), leading to highly cooperative binding.

In many systems, the binding of a ‘‘signal’’ (an activated
protein, peptide ligand, hormone, metabolite, etc.), which we call
‘‘S’’, influences dimerization of its protein target, which we call
‘‘P’’, and this dimerization event facilitates a downstream
response. For instance, in many cases when a ligand binds its
cognate receptor tyrosine kinase, it induces receptor dimerization,
which affects downstream signaling.13 This mechanism is not
only limited to extracellular ligand/cell surface receptor systems,
but can also apply to intracellular signaling cascades. For
example, when active GTP-bound Ras binds Raf kinase it
promotes Raf dimerization, which is required for wild-type
Raf activity.14 In addition, principally in bacteria and other
prokaryotes, DNA induces the dimerization of type II restriction
enzymes (e.g. BamH1), switching on their enzymatic activity.15

One important feature of any signaling system is the quantitative
nature of its steady-state, input–output response. This is often
described in terms of cooperativity or ultrasensitivity and is quanti-
fied by a Hill coefficient, which indicates the effective cooperativity
behavior. For example, the phosphorylation of cdc25C by cdk1,
which is a critical step driving the cell cycle transition from G2 into
mitosis, was shown to ensue with positive cooperativity and a Hill
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coefficient greater than one,16 resulting in a strong and immediate
all-or-none transition into mitosis to avoid the potentially lethal
consequences of an uncoordinated transition. Conversely, EGF
binding to EGFR ensues with negative cooperativity and a Hill
coefficient less than one,17 which would allow the EGFR system
to respond more gradually to a wider range of growth factor
concentrations.18

Effective cooperativity is currently understood to be controlled
either (i) at the initial level of a signal (e.g. ligand) binding to its
downstream protein (e.g. receptor), where allosteric interactions
cause the initial signal binding event to increase or decrease affinity
for subsequent binding events, or (ii) by systems-level effects, such as
explicit positive or negative feedback or multi-tiered cascades.19–22

Here, we show how dimerization processes by themselves can
control effective cooperativity in a manner that dominates over the
first mechanism, revealing both a novel role for the widespread
dimerization motif and a new Hill coefficient tuning mechanism.
Although many studies have investigated cooperativity in dimerizing
systems, their focus is largely on the effects of ligand- (‘‘signal-’’ in
our model) binding affinity, or another mechanism specific to their
system, as the driver of cooperativity.23–28 The notion that dimeriza-
tion alters dose–response properties of a biochemical system has
been mentioned by a few prior studies,29–33 but the extent to which it
can alter cooperativity has not been explicitly investigated in a
general sense. Most importantly, none have investigated how
changes in dimerization affinity can reverse canonical, ligand
affinity-induced cooperativity from being negative to positive and
vice versa. Through an exhaustive parameter sensitivity analysis of a
general kinetic model for signal-mediated dimerization, we show
that dimerization processes can increase, eliminate, and even reverse
signal binding-induced cooperativity. Simulations suggest that this
dimerization-based control of cooperativity is largely mediated by the
favored accumulation of stoichiometrically asymmetric dimers (i.e.
dimers with a signal-to-target protein ratio of 1 : 2) which sequester
signal binding sites, consistent with previous work.29–33 Further
analyses reveal that changes in dimerization affinity leading to the
accumulation of these stoichiometrically asymmetric dimers can
increase or decrease cooperativity, and that the quantitative relation-
ship between stoichiometrically asymmetric dimers and cooperati-
vity depends largely on how key signal-binding parameters are
configured. Our findings demonstrate that the canonical, allosteric
view of cooperativity is incomplete without considering dimerization
effects. This is of particular importance as dimerization is often a
necessary feature of the allosteric mechanism. In addition to the
aforementioned ideas, the widespread presence of dimerization
motifs in biology may be related to their ability to tune cooperativity
both in a coarse and fine sense, thus influencing phenotypes
through quantitative properties of input–output responses.

Results and discussion
Different dimerization schemes cause widely varying
cooperativity behavior

To begin exploring how the dimerization motif affects coopera-
tivity and ultrasensitivity, we consider the situation where a signal,

S, binds to a downstream protein, P, and the downstream protein
dimerizes (Fig. 1A). This could represent a host of biological
systems as described above. To analyze dose–response curves and
their resulting cooperativity/ultrasensitivity behavior, we compute
Hill coefficients based on both traditional Scatchard analysis
(‘‘Scatchard n–ns’’—indicator of cooperativity) and a more bio-
logically relevant ‘‘functional’’ analysis (‘‘Functional n–nf’’—
indicator of ultrasensitivity). Scatchard dose–response curves
are calculated by summing all signal-bound species on the
y-axis ([SP] + [SPP] + 2 � [SPSP]) whereas functional dose–response
curves are calculated by summing only the signal-induced bio-
logically active dimer species on the y-axis ([SPP] + [SPSP]). Both are
plotted against free [S] (unbound S) on the x-axis. A Hill coefficient
n = 1 indicates the absence of effective cooperativity/ultrasensitivity,
an n o 1 indicates effective negative cooperativity/ultrasensitivity,
and an n 4 1 indicates effective positive cooperativity/
ultrasensitivity. We also present the traditional Scatchard plots
(Fig. 1, right panels), which give a qualitative indication of
cooperativity.34,35 A linear Scatchard plot indicates the absence
of cooperativity, a concave-up plot indicates negative coopera-
tivity, and a concave-down plot indicates positive cooperativity.
For simplicity, from here on we refer only to the term coopera-
tivity rather than both cooperativity and ultrasensitivity.

When all rate constants in the entire scheme are set to unity,
there is no effective cooperativity (Fig. 1A). To illustrate how
extreme dimerization variant cases of this scheme can alter this
base cooperativity behavior we consider two scenarios. First, when
S binds P and then SP dimerizes with an additional downstream
protein, P, the stoichiometrically asymmetric dimer, SPP, results
and the cooperativity is negative, indicated by Hill coefficients less
than one and a concave-up Scatchard plot (Fig. 1B). This systems-
level negative cooperativity arises from the fact that binding sites
are sequestered in the stoichiometrically asymmetric dimer, SPP.
The functional analysis (Fig. 1B, middle, green dashed line) dis-
plays non-monotonicity here because at high [S], all of the P is
contained in SP molecules, precluding formation of SPP. When S
binding P is followed by the dimerization between two SP mole-
cules, positive cooperativity results as indicated by Hill coefficients
greater than one and a concave-down Scatchard plot; the func-
tional analysis shows a similar trend (Fig. 1C). This model could
represent estrogen receptor signaling, where the dimerization of
two hormone-bound receptors stimulates DNA binding and trans-
criptional activation.36 Accordingly, estrogen receptor signaling
has been reported to display positive cooperativity.37 Notably, this
scheme is often the one assumed in models of RTK signaling,38–41

despite the fact many RTKs exhibit negative cooperativity.

Dimerization can reverse canonical negative or positive
cooperativity

We hypothesized that since inclusion of different dimerization
mechanisms alters system cooperativity, changes in dimeriza-
tion rate constant parameters could control cooperativity in
this system. We further thought that dimerization processes
may even be able to reverse negative or positive cooperativity
caused by the canonical allosteric mechanism, where the signal
explicitly has a different affinity for the second binding event.
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To test this hypothesis, we explored the range of Hill
coefficients obtainable by only altering dimerization rate con-
stant parameters (those belonging to reaction rates v3, v4, v5,
v6, v11, and v12) while keeping signal binding rate constant
parameters fixed (those belonging to reaction rates v1, v2, v7, v8,
v9, and v10), similar to a parameter variation study of MAPK
signaling dynamics.42 This is done to show the extent to which
the modulation of dimerization rate constants can alter coopera-
tivity. To perform this parameter sensitivity analysis, we allowed
all rate constant parameters to take one of three possible
values—0.1, 1, or 10 (s�1 or s�1 nM�1)—and then calculated
ns and nf (Fig. 2). Each horizontal bar corresponds to a single,
fixed set of signal binding rate constants while all possible sets
of dimerization rate constants are explored and the resulting
range of Hill coefficients is recorded (see Fig. 2A for graphical
description). Thus, there are 36 horizontal bars, one for each
possible set of signal binding rate constants (3 possible values for
each of 6 rate constant parameters), where each bar is populated
by 36 simulation-derived Hill coefficients (one for each possible
set of dimerization rate constant parameters). The central dark
blue sections of each bar denote Hill coefficients between the

5th and 95th percentiles and the light blue tips span the
remaining 5% on either side. The red dots on each bar signify
the Hill coefficient when all dimerization rate constants are
set to unity for that particular set of signal binding rate
constants, representing a ‘‘baseline’’ for each set of signal
binding rate constants before dimerization rate constants are
modulated.

As the data depict, changes in dimerization rate constants
can strongly alter Hill coefficients independently of changes in
signal binding rate constants. For systems that naturally have
negative cooperativity (red dot left of the black dashed line) or
positive cooperativity (red dot right of the black dashed line)
dimerization rate constant changes can (i) reinforce coopera-
tivity (n 4 1 becoming larger or n o 1 becoming smaller),
(ii) eliminate cooperativity (n approaches 1) or, (iii) reverse
cooperativity (n 4 1 becoming n o 1 or vice versa). Thus,
dimerization can actually dominate over the canonical allosteric
mechanism for generating cooperativity. These results hold true
regardless of whether a Scatchard or functional analysis is used
(compare Fig. 2B and C). Interestingly, in the Scatchard case,
when all signal binding kon rates are equal and all signal binding

Fig. 1 The cooperativity behavior resulting from different dimerization schemes. This figure depicts a kinetic scheme, dose–response curves, and a
Scatchard plot (left-to-right, respectively) for the full model and various model subsets when all rate constant parameters are set to unity. (A) Complete
model schematic depicting all possible species resulting from the binding and dimerization interactions between a signal, S, a downstream protein, P, and
the complex SP. This results in no cooperativity. (B) A schematic of S binding P, followed by the dimerization of SP with an additional P, resulting in the
stoichiometrically asymmetric dimer, SPP. This results in negative cooperativity. (C) A schematic of S binding P, followed by the dimerization between two
SP molecules, resulting in the stoichiometrically symmetric dimer, SPSP. This results in positive cooperativity.
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koff rates are equal (e.g. when k2,k8,k10 = 10 and k1,k7,k9 = 0.1)
and baseline cooperativity is thus absent (n = 1), changes in
dimerization affinity are not able to alter the cooperativity of
the system (there are nine occurrences of this in our data set).
This suggests, in the case of Scatchard-based analysis, that
some cooperativity must be pre-imposed by signal-binding
parameters in order for dimerization to be able to affect
cooperativity. This result did not hold for the functional Hill
coefficient analysis, however.

In order to determine whether our results applied to other
signal-induced dimerization mechanisms, we ran the same

analysis on two additional models that depicted interactions
between (1) a bivalent-ligand and a homodimer receptor (Fig. S1B
and C, ESI†) or (2) a bivalent-ligand and heterodimer receptors
(Fig. S1D and E, ESI†). We indeed found that changes in dimeri-
zation parameters can also reinforce, eliminate, and reverse
cooperativity imposed by the canonical allosteric mechanism,
just as in the general kinetic scheme (above).

The parameter sets used for our simulations do not satisfy
detailed balance. Detailed balance assumptions hold when
there are no changes in free energy along a cycle. From a
biological perspective, detailed balance is quite restrictive,

Fig. 2 The effect of dimerization affinity on cooperativity behavior. (A) Graphical description of each horizontal bar (in B and C). Each horizontal bar
corresponds to 36 (729) simulations and spans the range of Hill coefficients attainable by altering dimerization rate constants while keeping signal-binding
rate constants fixed. The dark blue section of each bar denotes Hill coefficients between the 5th and 95th percentiles and the light blue tips span the
remaining 5% on either side. Each bar contains a single red dot, indicating the ‘‘baseline’’ Hill coefficient, which is when all dimerization rate constants are
set to unity. (B) Results for Scatchard Hill coefficients (ns). (C) Results for functional Hill coefficients (nf). In B and C, the dashed line divides negative
cooperativity values on the left (n o 1) from positive cooperativity values on the right (n 4 1).
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since signal-induced dimerization events are often linked to
energy-generating mechanisms, such as ATP hydrolysis, even if
not explicitly modeled. Thus, detailed balance equations may
be inconsistent with many relevant biological situations of
interest in our study. Nevertheless, we generated parameter
sets that satisfied detailed balance to test whether our main
conclusions hold. We find that dimerization affinity can still
alter cooperativity and even reverse it for both the Scatchard
and functional case (Fig. S2B and C, ESI†), although for very
strong base positive cooperativity, it may not be possible to
reverse but rather only modulate cooperativity.

What do the dose response curves look like when dimeriza-
tion causes a reversal of canonical cooperativity? Fig. 3 shows
specific examples of how dimerization affinity can reverse or
reinforce cooperativity for three different sets of signal-binding
parameters: one that intrinsically yields negative cooperativity
(Fig. 3A), positive cooperativity (Fig. 3B), or no cooperativity
(Fig. 3C). For instance, at baseline, the simulation depicted in
Fig. 3A (left) produces a dose–response curve that possesses
negative cooperativity (ns = 0.53; solid black line). Changes in
dimerization rate constants alone can both profoundly reduce
(ns = 0.34; blue dashed line) or increase (ns = 1.31; red dashed
line) the cooperativity of the curve, even though signal-binding
rate constants are unchanged. Similar results are obtained for
the functional analysis, run using the same signal-binding
parameters (Fig. 3A, right), and the remainder of cases as well
(Fig. 3B and C).

Taken together, these results suggest that hard-wired dimeri-
zation affinity likely plays a significant role in determining the
cooperativity behavior of numerous biochemical systems. In
addition, biochemical systems could regulate dimerization affinity
in order to fine-tune and/or completely alter their cooperativity
behavior. For example, from a biological perspective, one function
of ligand-less receptors that act as obligate dimerization partners,
such as ErbB2 or p75 neurotrophin receptor, may be to tune
cooperativity through their expression levels.43,44 From a pharmaco-
logical perspective, drugs that act by inhibiting dimerization, such
as trastuzumab or pertuzumab (for ErbB2 positive breast cancer45),
may not only inhibit signaling directly, but may also alter the
cooperativity and dose response of the system. Understanding this
may lend novel insight into how drugs of this kind mediate their
therapeutic or toxic effects.

Stoichiometrically asymmetric dimer behavior is a major
determinant of cooperativity

How does dimerization control cooperativity? Previous work
has suggested that the stoichiometrically asymmetric dimer,
SPP, plays a central role.29–33 Based on this, we hypothesized
that the SPP molecule would be more abundant in simulations
with low Hill coefficients and vice versa. Using the data generated
by the exhaustive parameter sensitivity analysis described above
(a total of 312 = 531 441 simulations), we plotted the Hill
coefficient versus the integral of steady-state [SPP] over a range
of initial signal concentrations ([S]0). We termed this quantity
‘‘SPP area’’ (see Fig. 4A for graphical description). SPP area
displayed a significant negative correlation with both the

Scatchard (r = �0.48, p o 0.001; Fig. 4B) and functional (r =
�0.23, p o 0.001; Fig. 4C) Hill coefficients. The relationship
appears to exhibit a 1/x-type dependence, meaning that positive

Fig. 3 Examples of dimerization rate constants reversing and reinforcing
cooperativity behavior. In all panels, dimerization rate constants are modulated
and signal-binding rate constants are held constant. The Scatchard analyses are
on the left and the functional analyses are on the right. Solid black lines refer to
the baseline case, when all dimerization parameters are set to unity, the red and
blue dashed lines denote the dose–response curves possessing the maximum
and minimum Hill coefficients, respectively, induced by changing dimerization
rate constants. (A) Example simulation when the baseline n o 1. The signal-
binding rate constants are: k1,k7,k8 = 0.1, k10 = 1, and k2,k9 = 10. The dose–
response curves for max Scatchard (k3,k6,k11 = 0.1, k4,k5,k12 = 10), min Scatchard
(k4,k5,k11 = 0.1, k3,k6,k12 = 10), max functional (k3,k6 = 0.1, k4,k5,k11,k12 = 10), and
min functional (k4,k6,k11,k12 = 0.1, k3,k5 = 10) are displayed alongside their
respective Hill coefficients. (B) Example simulation when the baseline n 4 1.
The signal-binding rate constants are: k8,k9,k10 = 0.1, k7 = 1, and k1,k2 = 10. The
dose–response curves for max Scatchard (k3,k6,k11,k12 = 0.1, k4 = 1, k5 = 10), min
Scatchard (k4,k5,k12 = 0.1, k3,k6,k11 = 10), max functional (k3,k6 = 0.1, k4,k12 = 1,
k5,k11 = 10), and min functional (k4,k5 = 0.1, k3 = 1, k6,k11,k12 = 10) are displayed
alongside their respective Hill coefficients. (C) Example simulation when the
baseline n B 1. The signal-binding rate constants are: k2,k7,k9 = 0.1, k8,k10 = 1,
and k1 = 10. The dose–response curves for max Scatchard (k3,k11,k12 = 0.1,
k4,k5,k6 = 10), min Scatchard (k3,k4,k5,k6,k12 = 0.1, k11 = 10), max functional
(k3,k11,k12 = 0.1, k4,k5,k6 = 10), and min functional (k4,k5,k6 = 0.1, k12 = 1, k3,k11 =
10) are displayed alongside their respective Hill coefficients.
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cooperativity only seems to be possible when SPP area is low.
The same analysis done with the parameter sets that satisfy
detailed balance gave highly similar results (Fig. S3, ESI†).

Our reasoning for why the accumulation of SPP drives negative
cooperativity is that SPP sequesters two downstream P molecules
for every signal S molecule, disrupting the stoichiometric balance
between S and P. In other words, each time an SPP molecule is
formed, a potential binding site for an S molecule is removed.
This imbalance leads to an increased ratio of free [S] to free [P],
which is a hallmark of negative cooperativity as defined by
Scatchard analysis. Conversely, a decrease in the ratio of free
[S] to free [P] is an indicator of positive cooperativity. Thus,
it appears that dimerization controls cooperativity by hijacking
the canonical allosteric mechanism.

How stoichiometrically asymmetric dimers affect cooperativity
is highly parameter dependent

The overall negative correlation between SPP area and coopera-
tivity (Fig. 4B) implies that if one favors accumulation of SPP,
then the system should be more negatively cooperative.
We wondered whether this trend was general, or if there might
be a different dependence of cooperativity on SPP area for
specific sets of signal-binding parameters (which correspond
to individual bars in Fig. 2B). To explore this, we looked at

changes in SPP area while altering dimerization parameters
but keeping signal-binding parameters constant, and calcu-
lated a Pearson’s r correlation coefficient between SPP area
and Scatchard Hill coefficients across each set of fixed signal-
binding parameters. Surprisingly, we found that many para-
meter sets’ cooperativity behavior is positively correlated with
SPP area (Fig. 5A, top vs. bottom panel), opposite to the general
trend. We found this correlation behavior to depend heavily on
the baseline Hill coefficient for each set (Fig. 5B; p o 10�102);
systems that inherently display negative cooperativity show
a negative correlation (similar to the general trend), while
systems that inherently display positive cooperativity show
a positive correlation. Mechanistically, this correlation seems
to be controlled by a ratio between the dissociation constants
(Kd) of the signal binding reactions surrounding SPP in our
scheme (Kd9,10/Kd7,8) (Fig. 5C). When this ratio is small,
increased SPP area leads to increased cooperativity, but
when this ratio is large, increased SPP area leads to decreased
cooperativity.

Based on this logic, a particular system’s dimerization para-
meters could be theoretically configured to favor or disfavor
SPP accumulation, and thus tune the resulting Hill coefficient.
However, the tuning direction depends on how signal binding
parameters are configured. Thus, although accumulation of

Fig. 4 Stoichiometrically asymmetric dimer accumulation is a major determinant of cooperativity. (A) An example of how ‘‘SPP area’’ (shaded region) is
calculated. (B) Scatterplot showing the correlation between Scatchard Hill coefficients (ns) and their corresponding SPP areas for each of the 312 (531 441)
simulations. The correlation is highly significant (r = �0.48, p o 0.001). (C) Scatterplot showing the correlation between functional Hill coefficients (nf)
and their corresponding SPP areas for each of the 312 simulations. The correlation is significant (r = �0.23, p o 0.001).
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SPP was previously considered to be the main determinant
of cooperativity, this analysis shows that how SPP controls
cooperativity is highly dependent on the particular para-
meters of the whole system, namely, the baseline signal-
binding cooperativity behavior. Thus, generally favoring SPP
abundance will not always result in a more negatively coopera-
tive system.

Conclusions

We show that dimerization processes can significantly alter
the cooperativity behavior of a system and can even reverse

the canonical, allosteric mechanism of negative or positive
cooperativity. These findings indicate that the canonical allosteric
view of cooperativity is incomplete without considering dimeri-
zation effects; this is particularly important because dimeriza-
tion is often a necessary feature of the allosteric mechanism.
Furthermore, these findings suggest that one reason for the
widespread presence of dimerization motifs in biology may be
to tune and/or reverse the cooperativity behavior of biochemical
systems—a function that is likely critical to the proper func-
tioning of various signaling systems. We suggest that this
cooperativity-altering function of dimerization is largely driven
by the accumulation of stoichiometrically asymmetric dimer
species. However, the effect of stoichiometrically asymmetric

Fig. 5 Effect of changes in dimerization affinity on stoichiometrically asymmetric dimer accumulation. (A) Each plot represents one example set, in
which dimerization parameters are altered (to be either 0.1, 1, or 10 s�1 or nM�1 s�1) but signal binding parameters are held constant (36 total simulations
per plot), and individual simulations are colored according to that simulations’ Scatchard Hill coefficient. Dark red and dark blue represent the maximum
and minimum Hill coefficient, respectively, for that set. Sets’ cooperativity behavior is sometimes positively correlated (top panel) and sometimes
negatively correlated (bottom panel) with SPP area. (B) Bar plot showing the mean of the Pearson’s r correlation coefficients, which capture the
correlation between cooperativity and SPP area, for sets with a baseline greater than 2 (left) or less than 0.6 (right). The two groups are strongly
statistically different (p o 10�102). Error bars depict the standard deviation. (C) Boxplots show the relationship between Pearson’s r correlation coefficients
and the ratio between the dissociation constants Kd9,10 and Kd7,8 ((k9/k10)/(k7/k8)).
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dimer accumulation on the Hill coefficient is dependent on the
baseline signal binding parameters.

Gaining a more in-depth understanding of the relationships
between dimerization and cooperativity in disease may lead to
a more rational drug-design process, whereby certain dimer
species could be preferentially targeted over others. In addition,
this understanding may help us better understand how current
drugs that alter dimerization function may have otherwise
overlooked affects on systems-level behaviors such as tuning
input–output responses through cooperativity.

Methods
Model simulation

Chemical kinetics theory with mass action kinetics was used
to derive a differential equation model for each scheme in the
manuscript (see ESI† for equations). Models were simulated to
steady-state using MATLAB (The Mathworks, Natick, MA) with
the function ode15s.

Dose response curves and Scatchard analysis

For each simulation, 25 log-spaced values for initial signal con-
centrations, [S]0, were explored, ranging from 10�2 to 103 nM.
Each simulation began with an initial downstream target
protein concentration, [P]0, of 100 nM. Steady-state values for
each species, at each designated [S]0, were used to generate a
dose–response curve. Dose–response curves were generated
by plotting free [S] versus the sum of signal-bound species
([SP] + [SPP] + 2 � [SPSP]) for Scatchard analysis and the sum
of signal-induced biologically active dimers ([SPP] + [SPSP]) for
the functional analysis. The Hill coefficients were calculated by
fitting the Hill equation to the simulated data using a least
squares method with the MATLAB function lsqcurvefit. This
Hill equation is given by:

Y ¼ Ymax½S�n

Kn
50 þ ½S�

n (1)

where Y is the output (sum of signal bound species), Ymax is the
maximum level of Y, [S] is free signal concentration, K50 is the
[S] at which Y = Ymax/2, and n is the Hill coefficient. For
the functional analysis, Hill coefficients were determined using
only the portion of the curve prior to the maximum to avoid
potentially erroneous calculations due to non-monotonicity
(see Fig. S4, ESI† for an example fit). Dose response curves
and Scatchard plots in Fig. 1 were generated with all kinetic
parameters set to unity.

Exhaustive parameter sensitivity analysis

Each of the twelve rate constants in the complete model
(Fig. 1A) was allowed to take one of three possible values: 0.1,
1, or 10 (s�1 or s�1 nM�1). Every possible permutation of the
parameters was simulated, resulting in 312 (or 531 441) different
parameter sets. For each parameter set, dose response curves were
generated and Hill coefficients estimated as described above. Only
simulations that can satisfy the following equations (depicting the
two major cycles: P + S - SP + P - SPP - S + PP - P + P and

SP + SP - SPSP - S + SPP - P + SP - S + P) are able to satisfy
detailed balance:

k2

k1
� k6
k5
� k7

2 � k8
� k3
k4
¼ 1 (2)

k12

k11
� 2 � k9
k10
� k5
k6
� k2
k1
¼ 1 (3)

Thus, none of our parameter sets satisfied detailed balance as
they were. We generated parameter sets that satisfied detailed
balance by solving for k4 and k12 such that eqn (2) and (3) were
satisfied, while keeping all other rate constants as they were
for each of the 312 simulations. We used this data in Fig. S2
and S3 (ESI†).

Calculating area under the SPP curve (‘‘SPP area’’)

To calculate the area under the SPP dose–response curve, [SPP]
steady-state values were plotted versus [S]0 and the integral
under the curve was calculated for each simulation using the
MATLAB function trapz. The example in Fig. 4A was computed
with the following rate constants: k1,k2,k6,k7,k8,k9,k10 = 1,
k3,k11 = 10, and k4,k5,k12 = 0.1. Area values were plotted versus
the Hill coefficients for all 312 simulations.

Examples of SPP area and boxplots in Fig. 5

Example sets in Fig. 5A possessed the following signal-binding rate
constants from left-to-right: k1,k2,k7,k8,k9,k10 = [0.1,1,10,0.1,0.1,10],
[0.1,1,0.1,1,0.1,10], [1,0.1,10,0.1,1,0.1], [1,0.1,10,0.1,1,1],
[10,0.1,1,1,0.1,0.1], [0.1,0.1,0.1,10,0.1,0.1], [10,0.1,0.1,10,1,1],
[10,1,1,1,10,0.1]. For the boxplots, the central red line is the
median, the edges of the box are the 25th and 75th percentiles,
and the whiskers extend to the maximum and minimum values
not considered outliers. Points are defined as outliers if they are
greater than q3 + w(q3 � q1) or smaller than q1 � w(q3 � q1),
where w = 1.5.
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