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1 Derivation of Equation 2 in the main text

A new random variable Y results from transformation of the existing random variable Z using a function
R(Z). The probability density function, pdf, of random variable Z is known and expressed as fZ(z). The
goal is to obtain the pdf of Y , fY (y) [1]. In our case, random variable Z represents cell-to-cell variability
of the parameters that describe the response function R(X), i.e. the input stimulus x, response threshold
x50, maximum response Rmax, basal response β or response steepness H. For our purposes, the pdf fX(x)
is a log-normal distribution.

The cumulative distribution function, CDF, of Y , can be expressed as:

FY (y) = P [Y ≤ y] = P [R(Z) ≤ y] = P [Z ∈ DY ], (1)

where the set DY = z : R(Z) ≤ y = z : z ≤ r(y), where r(y) is the inverse function of R. Equipped with
these definitions we can express the CDF of Y in terms of the CDF of Z:

FY (y) = P [Z ≤ r(y)] = FZ(r(y)). (2)

In order to obtain the pdf we simply differentiate the above expression to obtain:

fY (y) =
d

dy
FY (y) = fZ(r(y))

d

dy
r(y). (3)

Assumptions behind the above equation, monotonicity of R(z) and finite integral of fz, are easily satisfied
in a biological system such as a signalling network. The response function R(z) is typically approximated
by a sigmoidal Hill function:

y = R(x, β, θ, Rmax, H) = β +Rmax
xH

xH50 + xH
. (4)

Parameter variability described by the function fz is a probability density function which by definition
sums up (integrates) to 1.

2 Conditions for the existence of bimodality in the presence of
response threshold variability

In this section we derive conditions for existence of bimodal output distribution given log-normal distri-
bution of the response threshold x50 with scale parameter µx50 and shape parameter σx50,

fX50(x50) =
1

x50 σx50
√

2π
exp

[
− (log x50 − µx50)

2
/ 2σ2

x50

]
, x50 > 0, (5)
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Figure S1: Graphical interpretation of conditions for the existence of bimodality. Equation 8 has solutions
in terms of variable y when expressions on the left and the right hand side intersect. (A) First condition
assures the slope of the linear function ay+ b on the left hand side of Eq. 8. Only lines with slopes larger
than 4/Rmax (solid red) are able to intersect the log function (solid black) three times. (B) Appropriate
slope is yet not sufficient; y-intercept of the linear function, as quantified by b, has to be within certain
bounds (Eq. 12).

and sigmoidal response modelled by Hill function (Eq. 4). Substituting the above into Eq. 3, we obtain:

fout(y) =
1

Hσx50
√

2π

Rmax
(Rmax − y)y

exp

− 1

2σ2
x50

(
µx50 − log

[
x

(
Rmax − y

y

) 1
H

])2
 . (6)

For ease of read, we set the type of the output y in bold.

A bimodal distribution exists only if the above function assumes two maxima and a minimum between
them. In order to find these three extrema we analyse first derivative of Eq. 6:

d

dy
fout(y) =

1

H2σ3
x50

√
2π

R2
max

(Rmax − y)2 y2
exp

[
− (. . . )

2
]

×
(

2Hσ2
x50

Rmax
y − µx50 −Hσ2

x50 + log

[
x

(
Rmax − y

y

) 1
H

])
. (7)

The term with the exponent is always positive, therefore we only analyse the expression in brackets and
search for its zeros. After expanding logarithm on the right hand side, we obtain:

2H2σ2
x50

Rmax
y −H2σ2

x50 +H (log x− µx50) = log

[
y

Rmax − y

]
, (8)

which is a transcendental equation with a linear function of the form ay + b on the left hand side. We
solve this equation graphically as shown in Fig. S1, which results in two conditions, for the slope a (panel
A) and for y-intercept b (panel B).

The slope a = 2H2σ2
x50/Rmax has to be larger than the smallest slope of the r.h.s. of Eq. 8, which is

achieved at the inflection point at y = Rmax/2:

d

dy
log

[
y

Rmax − y

] ∣∣∣∣∣
y=Rmax/2

=
4

Rmax
. (9)

This way we obtain the first condition, necessary but not sufficient, for the existence of bimodal output
distribution,

H2σ2
x50 > 2 . (10)

Note that the condition is independent of Rmax.

Once we know the slope, we can search for the range of admissible y-intercepts that result in three inter-
sections (Fig. S1). To achieve that, we first calculate argument y for which the slopes (first derivatives)
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Figure S2: Bimodality region as function of Hill coefficient, H, and shape parameter of the x50 distri-
bution, σx50. Colour coding indicates the width, ∆α ≡ α+ − α−, of admissible log (x/mx50) ratios that
yield a bimodal distribution. The entire coloured region corresponds to the first condition, H ·σx50 >

√
2.

of the left and the right hand side of Eq. 8 are equal; since the r.h.s. of Eq. 8 is symmetric around
Rmax/2, we obtain abscissae yt1,t2 of two tangent points (cf. Fig. S1B),

2H2σ2
x50

Rmax
=

Rmax
y(Rmax − y)

=⇒ yt1,t2 =
Rmax

2

(
1∓

√
1− 2

H2σ2
x50

)
. (11)

By evaluating r.h.s. of Eq. 8 at yt1 and yt2 we obtain the lower and upper bound for parameter b =
H(log x− µx50)−H2σ2

x50,

ay + b

∣∣∣∣∣
y=yt1

< log

[
y

Rmax − y

] ∣∣∣∣∣
y=yt1

ay + b

∣∣∣∣∣
y=yt2

> log

[
y

Rmax − y

] ∣∣∣∣∣
y=yt2

. (12)

Before spelling out the result we rewrite parameter b by noting that µx50 = logmx50, where mx50 is the
median of the log-normal distribution of the response parameter x50. Therefore b becomes:

b = H log
x

mx50
−H2σ2

X . (13)

The median of a probability distribution is a half-maximum point of the related cumulative distribution.
In other words, the median is the “middle point” of the distribution. Therefore, the fraction x/mx50 is
the ratio of the input signal x and the middle point of the x50 distribution.

From Eq. 12 we derive symmetric bounds for logarithm of this ratio:

α− (H,σx50) < log
x

mx50
< α+ (H,σx50) , (14)

where:

α± (H,σx50) ≡ ±σx50
√
H2σ2

x50 − 2 +
1

H
log

[
H2σ2

x50 − 1∓Hσx50
√
H2σ2

x50 − 2

]
. (15)

Figure S2 illustrates graphically the range ofH and σx50 parameters (Eq. 10) and the range of log (x/mx50)
ratios (Eq. 14) that need to be satisfied in order to obtain a bimodal output distribution.
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Figure S3: Schematic illustration of how to calculate x50 distribution from output distributions obtained
for the range of inputs x. (A) First, create a function gcut of input x, which assumes values of density (or
frequency) for a particular output y. (B) We choose y at a half-distance between the peaks (the modes) of
output distributions obtained for the saturating and basal levels of x. At y = (Rmax+β)/2, the function
gcut depends only on parameters of x50 distribution (Eq. 17) which is assumed to be log-normal.

3 Inferring x50 distribution from output distributions

Consider Eq. 6 as a function of the input level x instead of the output y (Fig. S3). After normalisation
to 1, such a function becomes a pdf :

gcut(x; y, mx50, σx50) =
1

mx50σx50
√

2π

(
Rmax − y

y

)1/H

(16)

× exp

−σ2
x50

2
− 1

2σ2
x50

(
µx50 − log

[
x

(
Rmax − y

y

)1/H
])2

 .
This equation has the output value y as a parameter and the remaining problem is the choice of y such
that the pdf depends only on parameters determining the underlying log-normal distribution of x50, thus
mx50 = exp(µx50) and σx50. The dependency on H and Rmax can be alleviated by setting y = Rmax/2.
Therefore, the expression in parentheses, (Rmax − y) /y, becomes 1 which yields:

gcut (x; mx50, σx50)
∣∣∣
y=Rmax/2

=
1

mx50σx50

√
2π

exp

[
−σ

2
x50

2
− 1

2σ2
x50

log2
[mx50

x

]]
. (17)

The above result demonstrates how to obtain parameters of the underlying log-normal distribution of
threshold parameter x50 in the Hill response model. First, values of experimental output distributions
obtained for a range of input levels x need to be taken at y equal to half of the maximum response
Rmax. Such a set can be fitted to equation 17 to obtain mx50 and σx50. The function 17 is not the
distribution of x50, but describes how the midpoint of the output distribution depends on input x. From
this dependency parameter values of the underlying x50 distribution can be inferred from experimental
results. By taking values of distributions obtained from flow cytometry at half-maximal response, the
threshold variability with least dependence on other parameters of the dose-response can be estimated.
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4 Distribution of Hill parameters

We take a generic model of a two-level cascade (Fig. S4A) with the following Michaelis-Menten kinetics
to demonstrate the log-normal character of parameter distributions in the Hill approximation of the dose
response:

g1 → g1p : [gIN ] v1
[g1]

k1 + [g1]
(18a)

g1p→ g1 : v2
[g1p]

k2 + [g1p]
(18b)

g2 → g2p : [g1p] v3
[g2]

k3 + [g2]
(18c)

g2p→ g2 : v4
[g2p]

k4 + [g2p]
(18d)

The distribution of Hill parameters results from a distribution of total protein levels: [g1]tot = [g1]+[g1p]
and [g2]tot = [g2] + [g2p]. We take the following parameters: v1 = 1.8, v2 = 9.5, v3 = 0.8, v4 = 2.6,
k1 = 9, k2 = 3.7, k3 = 5.4, k4 = 7.2.
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Figure S4: Distribution of parameters in Hill response model. (A) A generic two-level cascade. (B)
Solid black line – steady-state dose-response of g2p to input stimulation from analytical solution for
[g1]tot = [g2]tot = 100; dashed red – fit of the Hill response function (Eq. 4), β = 2.7, Rmax = 96.6,
x50 = 2.6, H = 12.1. (C) Assumed log-normal distribution of g1 and g2 total levels with the mean
100 and the standard deviation 20. (D-G) Solid black line – distributions of response threshold x50,
basal response β, maximum response Rmax, and response steepness H, respectively. Steady-state dose-
responses were calculated for a range of inputs from the analytical solution with total g1,2 levels sampled
from the log-normal distribution shown in panel C. Then, in order to obtain parameter distributions,
Hill functions were fitted to every dose-response. Dashed red line – fit of a log-normal distribution.
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5 Fitting parameters of the Hill response model to experiments

The theoretical prediction of distributions shown in Figure 5C (main text) is based on fitting Hill response
parameters to flow cytometry results shown in panel B of that figure. Steepness coefficient H is obtained
by fitting Hill curve to normalised mean fluorescence intensity (nMFI) of ODD-GFP (Fig. S5A and
Table S2). Other parameters are assumed to vary according to distributions fitted to flow cytometry
data.

The variability in basal level β is assumed to follow a distribution of fluorescence intensity for unstim-
ulated case, i.e. DMOG = 0mM (Fig. S5B and Table S3). The maximum response Rmax varies as
the distribution for the maximum stimulation in our experiments, i.e. DMOG = 4mM (Fig. S5C). We
correct this distribution for the variability in basal level by subtracting the mean and variance of the
latter (Table S4).

The threshold x50, the only parameter that we assume to give rise to widening of the output distribution
at intermediate stimuli level, is obtained according to procedure described in Section 3: values of ODD-
GFP distributions for all DMOG stimuli are taken at approximately half maximum fluorescence intensity
(Fig. S5D and Table S5).

We used the following probability density functions for the fitting procedure:

Log-normal distribution with shape parameter σ and scale parameter µ:

fLN (x;µ, σ) =
1

x
√

2πσ
e−

(ln x−µ)2

2σ2 (19)

Gamma distribution with shape parameter k and scale parameter θ:

fG(x; k, θ) =
1

Γ(k)θk
xk−1e−x/θ (20)

Weibull distribution with shape parameter k and scale parameter λ:

fW (x; k, λ) =
k

λ

(x
λ

)k−1

e−(x/λ)k (21)
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Figure S5: Fitting parameters of Hill response model to single flow cytometry measurements shown
in Figure 5B (main text). (A) Red points – normalised median fluorescence intensity (nMFI, Eq. 5,
main text) of ODD-GFP; solid line – fitted Hill response function (Eq. 4). Fitting parameters are β,
Rmax, x50 and H that correspond to basal level, maximum response, response threshold and response
steepness, respectively. Fitting parameters are listed in Table S2. (B) Fits to ODD-GFP fluorescence
intensity distributions for unstimulated case, which is a proxy of variability in β. (C) Fits to ODD-
GFP fluorescence intensity distributions for maximum stimulation case, which is a proxy of variability in
Rmax. (B-D) Solid black line – experimental data. (B & C) Dashed red – log-normal distribution, dotted
green – Weibull distribution. Weibull distribution was a better fit based on a smaller value of Akaike
information criterion (AIC) as listed in Tables S3 & S4. (D) Fits to values of ODD-GFP fluorescence
intensity distributions at approximately half maximum of the distance between medians of distributions
recorded for DMOG = 0mM and DMOG = 4mM , i.e. at 104.4, 104.5, 105 for 4, 8 and 16h, respectively.
Dashed red – gcut(x) distribution from Eq. 17 from which we obtain µx50 and σx50 of the underlying
log-normal threshold distribution as listed in Table S5.
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Table S1: Parameters of the response function, Eq. 4, fitted to averages over 3-4 biological repeats and
shown in Fig. 5A, main text.

Time Parameter Estimate Std.Err. 95% CI

4h

β 1.06 0.0785 (0.724, 1.40)
Rmax 23.5 5.69 (-0.958, 48.0)
x50 5.43 1.63 (-0.157, 12.4)
H 1.42 0.124 (0.881, 1.95)

8h

β 1.18 0.153 (0.524, 1.84)
Rmax 101 40.5 (-73.7, 275)
x50 5.07 1.42 (-1.03, 11.2)
H 2.45 0.263 (1.32, 3.58)

16h

β 1.16 0.131 (0.592, 1.72)
Rmax 394 56.1 (152, 635)
x50 4.24 0.326 (2.83, 5.64)
H 3.47 0.154 (2.81, 4.14)

Table S2: Parameters of the response function, Eq. 4, fitted to a single experiment (Fig.S5A). We use
fitted values of the steepness parameter H to predict ODD-GFP distributions in Fig. 5C, main text.

Time Parameter Estimate Std.Err. 95% CI

4h

β 1.06 0.168 (0.339, 1.79)
Rmax 23.6 4.74 (3.21, 44.0)
x50 3.54 0.899 (-0.329, 7.41)
H 1.56 0.192 (0.737, 2.39)

8h

β 1.24 0.245 (0.181, 2.29)
Rmax 106 44.5 (-85.4, 297)
x50 4.83 1.52 (-1.70, 11.4)
H 2.36 0.308 (1.03, 3.68)

16h

β 1.13 0.125 (0.595, 1.67)
Rmax 908 304 (-399, 2214)
x50 5.31 0.746 (2.10, 8.51)
H 3.57 0.163 (2.87, 4.27)
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Table S3: Fitting parameters of the basal response level, [DMOG] = 0 mM (Fig. S5B). The distributions
are given by Eqs. 19-21. AIC denotes Akaike information criterion based on which a better fitting
distribution is chosen.

Time Distribution AIC Parameter Estimate Std.Err. 95% CI CV 2

4h

log-normal -1230
σ, shape 0.0812 0.000821 (0.0796, 0.0828)

0.0066
µ, log-scale 1.38 0.00101 (1.380, 1.384)

gamma -1270
k, shape 152 2.93 (146, 157)

0.0066
θ, scale 0.0263 0.000509 (0.0253, 0.0273)

Weibull -1920
k, shape 13.7 0.0736 (13.6, 13.9)

0.0079
λ, scale 4.05 0.00192 (4.045, 4.052)

8h

log-normal -1450
σ, shape 0.0887 0.000744 (0.0873, 0.0902)

0.0079
µ, log-scale 1.38 0.000910 (1.375, 1.378)

gamma -1510
k, shape 127 2.0 (123, 131)

0.0079
θ, scale 0.0312 0.000494 (0.0303, 0.0322)

Weibull -2370
k, shape 12.4 0.0444 (12.3, 12.5)

0.0096
λ, scale 4.03 0.00142 (4.034, 4.039)

16h

log-normal -1690
σ, shape 0.0708 0.000384 (0.0701, 0.0716)

0.0050
µ, log-scale 1.35 0.000470 (1.346, 1.348)

gamma -1770
k, shape 200 2.0 (196, 204)

0.0050
θ, scale 0.0192 0.000193 (0.0189, 0.0196)

Weibull -1920
k, shape 15.8 0.0715 (15.6, 15.9)

0.0061
λ, scale 3.91 0.00136 (3.905, 3.911)
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Table S4: Fitting parameters of the maximum response level, [DMOG] = 4 mM (Fig. S5C).

Time Distribution AIC Parameter Estimate Std.Err. 95% CI CV 2

4h

log-normal -1590
σ, shape 0.107 0.000907 (0.105, 0.109)

0.011
µ, log-scale 1.64 0.00111 (1.633, 1.638)

gamma -1690
k, shape 88.1 1.36 (85.4, 90.8)

0.011
θ, scale 0.0584 0.000905 (0.0566, 0.0602)

Weibull -2970
k, shape 10.6 0.0242 (10.52, 10.62)

0.013
λ, scale 5.27 0.00139 (5.26, 5.27)

Weibull
–

k, shape 2.65
– – 0.16

corrected (∗) λ, scale 1.26

8h

log-normal -1520
σ, shape 0.109 0.00106 (0.107, 0.111)

0.012
µ, log-scale 1.71 0.00129 (1.706, 1.711)

gamma NA
k, shape – – – –
θ, scale – – – –

Weibull -2840
k, shape 10.4 0.0287 (10.3, 10.4)

0.014
λ, scale 5.67 0.00185 (5.665, 5.672)

Weibull
–

k, shape 3.37
– – 0.11

corrected (∗) λ, scale 1.70

16h

log-normal -1130
σ, shape 0.0584 0.000577 (0.0572, 0.0595)

0.0034
µ, log-scale 1.84 0.000706 (1.837, 1.839)

gamma -1160
k, shape 294 5.6 (283, 305)

0.0034
θ, scale 0.0214 0.000410 (0.0206, 0.0222)

Weibull -2140
k, shape 18.9 0.0727 (18.8, 19.1)

0.0043
λ, scale 6.36 0.00157 (6.361, 6.367)

Weibull
–

k, shape 10.5
– – 0.01

corrected (∗) λ, scale 2.53

(∗) Rmax is corrected for the variability in basal level by subtracting the mean and variance of β. We
use the corrected values of shape and scale parameters to sample the responses shown in Fig. 5C in the
main text.

Table S5: Fitting parameters of the response threshold distribution (Fig. S5D). We fit gcut distribution
given by Eq. 17 to obtain parameters µx50 and σx50, which are scale and shape parameters of the
log-normal distribution that determines x50 variability.

Results of the fitting: Calculated stats of the x50 distribution:
Time Parameter Estimate Std.Err. 95% CI Mean Median StDev CV 2

x50

4h
σx50 1.15 0.204 (0.58, 1.71)

0.87 0.45 1.44 2.72
µx50 -0.793 0.343 (-1.75, 0.16)

8h
σx50 0.932 0.138 (0.55, 1.32)

1.18 0.76 1.39 1.38
µx50 -0.269 0.197 (-0.82, 0.28)

16h
σx50 0.482 0.033 (0.39, 0.57)

1.77 1.57 0.90 0.26
µx50 0.453 0.034 (0.36, 0.55)
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Table S6: Evaluation of conditions 1 and 2 (Eqs. 10 & 14) using parameters calculated from experimental
data: H – response steepness, σx50 – shape parameter of x50 distribution, mx50 = eµx50 – median of x50
distribution, where µx50 is the scale parameter of x50 distribution. The minimum and maximum value
of DMOG limit the range of treatment for which bimodality can arise.

Estimated from the experiment: Condition 1: Condition 2:
H shape, σx50 mx50 = eµx50 CV 2

x50 H2 σ2
x50 > 2 [DMOG]min [DMOG]max

4h 1.56 1.15 0.45 2.72 3.22 0.32 0.64
8h 2.36 0.93 0.76 1.38 4.82 0.38 1.55

16h 3.57 0.48 1.57 0.26 2.97 1.40 1.76
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Figure S6: Numerical quantification of bimodal regime from experimental data. (A) Bimodality region as
function of Hill coefficient, H, and shape parameter of the x50 distribution, σx50. Colour coding indicates
the width of admissible input range that yields a bimodal distribution (cf. Fig. S2). Points indicate H
and σx50 estimated from experiments. (B) Predicted differential entropy of output distributions at 16h
after treatment with [DMOG] = 1.6nM (median of the threshold distribution) for a range of threshold
variability. Steepness H = 3.57 (Table S2); β is Weibull-distributed with k = 15.8 and λ = 3.91
(Table S3); Rmax is Weibull-distributed with k = 10.5 and λ = 2.53 (Table S4); the median of the
threshold distribution mx50 = 1.6. Since the distributions are sampled numerically, Shannon entropy is
calculated for decreasing histogram bin sizes (or increasing quantisations) to give the best approximation
of the entropy of the continuous density. Threshold variability CV 2

x50 = 0.26 (σx50 = 0.48) is estimated
from the experiment at 16h post-DMOG (Table S5). (C) Predicted ODD-GFP distributions for some
values of CV 2

x50 from panel B.
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