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1 Derivation of Equation 2 in the main text

A new random variable Y results from transformation of the existing random variable Z using a function
R(Z). The probability density function, pdf, of random variable Z is known and expressed as fz(z). The
goal is to obtain the pdf of Y, fy-(y) [1]. In our case, random variable Z represents cell-to-cell variability
of the parameters that describe the response function R(X), i.e. the input stimulus «, response threshold
Z50, maximum response Ry,q., basal response 3 or response steepness H. For our purposes, the pdf fx(x)
is a log-normal distribution.

The cumulative distribution function, CDF, of Y, can be expressed as:
Fy(y) = P[Y <y| = P[R(Z) <y| = P[Z € Dy], (1)

where the set Dy = z: R(Z) <y =z:z < r(y), where r(y) is the inverse function of R. Equipped with
these definitions we can express the CDF of Y in terms of the CDF of Z:

Fy(y) = P[Z <r(y)] = Fz(r(y)). (2)
In order to obtain the pdf we simply differentiate the above expression to obtain:
d d
fr(y) a v () = fz(r(y)) dyr(y) ®3)

Assumptions behind the above equation, monotonicity of R(z) and finite integral of f,, are easily satisfied
in a biological system such as a signalling network. The response function R(z) is typically approximated
by a sigmoidal Hill function:
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Parameter variability described by the function f, is a probability density function which by definition
sums up (integrates) to 1.

2 Conditions for the existence of bimodality in the presence of
response threshold variability

In this section we derive conditions for existence of bimodal output distribution given log-normal distri-
bution of the response threshold x5y with scale parameter p,50 and shape parameter o5,

1
fxs0(®s50) = o n exp |— (log x50 — /J'w50)2 /2032550} ,  Ts50 >0, (5)
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Figure S1: Graphical interpretation of conditions for the existence of bimodality. Equation 8 has solutions
in terms of variable y when expressions on the left and the right hand side intersect. (A) First condition
assures the slope of the linear function ay + b on the left hand side of Eq. 8. Only lines with slopes larger
than 4/ R4, (solid red) are able to intersect the log function (solid black) three times. (B) Appropriate
slope is yet not sufficient; y-intercept of the linear function, as quantified by b, has to be within certain
bounds (Eq. 12).

and sigmoidal response modelled by Hill function (Eq. 4). Substituting the above into Eq. 3, we obtain:
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For ease of read, we set the type of the output y in bold.

A bimodal distribution exists only if the above function assumes two maxima and a minimum between
them. In order to find these three extrema we analyse first derivative of Eq. 6:
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The term with the exponent is always positive, therefore we only analyse the expression in brackets and
search for its zeros. After expanding logarithm on the right hand side, we obtain:
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which is a transcendental equation with a linear function of the form ay + b on the left hand side. We
solve this equation graphically as shown in Fig. S1, which results in two conditions, for the slope a (panel
A) and for y-intercept b (panel B).

The slope a = 2H?02;,/ Rinax has to be larger than the smallest slope of the r.h.s. of Eq. 8, which is
achieved at the inflection point at y = Rya./2:
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This way we obtain the first condition, necessary but not sufficient, for the existence of bimodal output
distribution,

Yy=Rmax /2

H?02%,, > 2. (10)
Note that the condition is independent of R,z -

Once we know the slope, we can search for the range of admissible y-intercepts that result in three inter-
sections (Fig. S1). To achieve that, we first calculate argument y for which the slopes (first derivatives)



7.2E10 —
g B 225 < Aar < 250
b
8.9E6 1 5 4
2
o B1E4T £s
R o
5 586+ 32
£
o
©
172 21
g
%o H0us0 = V2 0<Aa <25
0~ "% i 2 3 3 5

Hill coefficient, H

Figure S2: Bimodality region as function of Hill coefficient, H, and shape parameter of the x5y distri-
bution, o,50. Colour coding indicates the width, Ao = a™ — o™, of admissible log (z/m,s50) ratios that
yield a bimodal distribution. The entire coloured region corresponds to the first condition, H -0 .50 > /2.

of the left and the right hand side of Eq. 8 are equal; since the r.h.s. of Eq. 8 is symmetric around
Rz /2, we obtain abscissae y1 42 of two tangent points (cf. Fig. S1B),
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By evaluating r.h.s. of Eq. 8 at y;; and y2 we obtain the lower and upper bound for parameter b =
H(logx — piz50) — H?0250,
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Before spelling out the result we rewrite parameter b by noting that p.50 = logmgs0, where mysg is the
median of the log-normal distribution of the response parameter x5y. Therefore b becomes:

T

b= Hlog — H?%0%. (13)

M50

The median of a probability distribution is a half-maximum point of the related cumulative distribution.
In other words, the median is the “middle point” of the distribution. Therefore, the fraction x/mg 50 is
the ratio of the input signal z and the middle point of the x5y distribution.

From Eq. 12 we derive symmetric bounds for logarithm of this ratio:

o~ (H,0450) < log <at (H,o.5) , (14)

Mg50

where:
1
ot (H,0450) = +0u50\/ H20259 — 2 + T log |:H2(7250 —1F Hoyso\/ H?025 — 2] . (15)

Figure S2 illustrates graphically the range of H and 0,59 parameters (Eq. 10) and the range of log (x /m.50)
ratios (Eq. 14) that need to be satisfied in order to obtain a bimodal output distribution.



(A) Increasing (B) calculated at

stimulation levels: A % = (Ymax + Ymin)/2
—— X1
>
g X2 2
17}
e o o o X4 ©
> x5 >
y x1 x2 x3 x4 x5

Figure S3: Schematic illustration of how to calculate x5¢ distribution from output distributions obtained
for the range of inputs . (A) First, create a function g.,; of input x, which assumes values of density (or
frequency) for a particular output y. (B) We choose y at a half-distance between the peaks (the modes) of
output distributions obtained for the saturating and basal levels of x. At y = (Ryax +3)/2, the function
geut depends only on parameters of x50 distribution (Eq. 17) which is assumed to be log-normal.

3 Inferring x5, distribution from output distributions

Consider Eq. 6 as a function of the input level x instead of the output y (Fig. S3). After normalisation
to 1, such a function becomes a pdf:
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This equation has the output value y as a parameter and the remaining problem is the choice of y such
that the pdf depends only on parameters determining the underlying log-normal distribution of x5, thus
My50 = exp(fzs0) and o,50. The dependency on H and R4, can be alleviated by setting y = Ryaz/2.
Therefore, the expression in parentheses, (Rya — ¥) /Y, becomes 1 which yields:

1 o2 "
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The above result demonstrates how to obtain parameters of the underlying log-normal distribution of
threshold parameter x5q in the Hill response model. First, values of experimental output distributions
obtained for a range of input levels x need to be taken at y equal to half of the maximum response
R0z Such a set can be fitted to equation 17 to obtain mg50 and o,50. The function 17 is not the
distribution of x5, but describes how the midpoint of the output distribution depends on input z. From
this dependency parameter values of the underlying z5q distribution can be inferred from experimental
results. By taking values of distributions obtained from flow cytometry at half-maximal response, the
threshold variability with least dependence on other parameters of the dose-response can be estimated.



4 Distribution of Hill parameters

We take a generic model of a two-level cascade (Fig. S4A) with the following Michaelis-Menten kinetics
to demonstrate the log-normal character of parameter distributions in the Hill approximation of the dose
response:

91— g1p: [g1n] vlkl[il[]gl] (18a)

gip — g1 Uzlw[ilfjlp] (18b)

92 = g2 [g1D] U3k3[_€2%gﬂ (18c¢)
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The distribution of Hill parameters results from a distribution of total protein levels: [g1]tot = [91] + [91D]
and [go]tor = [g2] + [g2p]. We take the following parameters: v; = 1.8, vo = 9.5, v3 = 0.8, v4 = 2.6,
ki =9, ko= 3.7, ks = 5.4, ky = 7.2.
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Figure S4: Distribution of parameters in Hill response model. (A) A generic two-level cascade. (B)
Solid black line — steady-state dose-response of gop to input stimulation from analytical solution for
[91]tot = [g2]tot = 100; dashed red — fit of the Hill response function (Eq. 4), 8 = 2.7, Ryax = 96.6,
x50 = 2.6, H = 12.1. (C) Assumed log-normal distribution of ¢g; and g2 total levels with the mean
100 and the standard deviation 20. (D-G) Solid black line — distributions of response threshold x5,
basal response 3, maximum response R,,.;, and response steepness H, respectively. Steady-state dose-
responses were calculated for a range of inputs from the analytical solution with total g; o levels sampled
from the log-normal distribution shown in panel C. Then, in order to obtain parameter distributions,
Hill functions were fitted to every dose-response. Dashed red line — fit of a log-normal distribution.



5 Fitting parameters of the Hill response model to experiments

The theoretical prediction of distributions shown in Figure 5C (main text) is based on fitting Hill response
parameters to flow cytometry results shown in panel B of that figure. Steepness coefficient H is obtained
by fitting Hill curve to normalised mean fluorescence intensity (nMFI) of ODD-GFP (Fig. S5A and
Table S2). Other parameters are assumed to vary according to distributions fitted to flow cytometry
data.

The variability in basal level 5 is assumed to follow a distribution of fluorescence intensity for unstim-
ulated case, i.e. DMOG = 0mM (Fig. S5B and Table S3). The maximum response Ry, varies as
the distribution for the maximum stimulation in our experiments, i.e. DMOG = 4mM (Fig. S5C). We
correct this distribution for the variability in basal level by subtracting the mean and variance of the
latter (Table S4).

The threshold x50, the only parameter that we assume to give rise to widening of the output distribution
at intermediate stimuli level, is obtained according to procedure described in Section 3: values of ODD-
GFP distributions for all DMOG stimuli are taken at approximately half maximum fluorescence intensity
(Fig. S5D and Table S5).

We used the following probability density functions for the fitting procedure:

Log-normal distribution with shape parameter ¢ and scale parameter u:

1 _(nz-w?

T (19)

fon(zp,0) =
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Gamma distribution with shape parameter k and scale parameter 6:

fo(z; k,0) = ka_le_x/e (20)

Weibull distribution with shape parameter k£ and scale parameter \:

k xr k—1 Az k
fwlaik ) = 5 (X) e (@/%) (21)
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(B) fit of basal response level (at [DMOG] = 0OmM) to obtain variability in 8
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(C) fit of maximum response level (at [DMOG] = 4mM) to obtain variability in Rmax
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(D) fit of fluorescence intensity at half maximum to obtain variability in xso
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Figure S5: Fitting parameters of Hill response model to single flow cytometry measurements shown
in Figure 5B (main text). (A) Red points — normalised median fluorescence intensity (nMFI, Eq. 5,
main text) of ODD-GFP; solid line — fitted Hill response function (Eq. 4). Fitting parameters are 3,
Ripaz, 50 and H that correspond to basal level, maximum response, response threshold and response
steepness, respectively. Fitting parameters are listed in Table S2. (B) Fits to ODD-GFP fluorescence
intensity distributions for unstimulated case, which is a proxy of variability in 8. (C) Fits to ODD-
GFP fluorescence intensity distributions for maximum stimulation case, which is a proxy of variability in
Rynaz- (B-D) Solid black line — experimental data. (B & C) Dashed red — log-normal distribution, dotted
green — Weibull distribution. Weibull distribution was a better fit based on a smaller value of Akaike
information criterion (AIC) as listed in Tables S3 & S4. (D) Fits to values of ODD-GFP fluorescence
intensity distributions at approximately half maximum of the distance between medians of distributions
recorded for DMOG = 0mM and DMOG = 4mM, i.e. at 10*4, 105, 10° for 4, 8 and 16h, respectively.
Dashed red — geut(x) distribution from Eq. 17 from which we obtain p.50 and o.50 of the underlying
log-normal threshold distribution as listed in Table S5.



Table S1: Parameters of the response function, Eq. 4, fitted to averages over 3-4 biological repeats and
shown in Fig. 5A, main text.

Time Parameter Estimate Std.Err. 95% CI

i 1.06 0.0785  (0.724, 1.40)
i Bmas 23.5 5.69 (-0.958, 48.0)
50 5.43 1.63 (-0.157, 12.4)
H 1.42 0.124 (0.881, 1.95)
B 1.18 0.153 (0.524, 1.84)
gy Fmas 101 40.5 (-73.7, 275)
50 5.07 1.42 (-1.03, 11.2)
H 2.45 0.263 (1.32, 3.58)
B 1.16 0.131 (0.592, 1.72)
Lo, Bmas 394 56.1 (152, 635)
50 4.24 0.326 (2.83, 5.64)
H 3.47 0.154 (2.81, 4.14)

Table S2: Parameters of the response function, Eq. 4, fitted to a single experiment (Fig.S5A). We use
fitted values of the steepness parameter H to predict ODD-GFP distributions in Fig. 5C, main text.

Time Parameter Estimate Std.Err. 95% CI

B 1.06 0.168 (0.339, 1.79)
a Bmas 23.6 4.74 (3.21, 44.0)
50 3.54 0.899 (-0.329, 7.41)
H 1.56 0.192 (0.737, 2.39)
B 1.24 0.245 (0.181, 2.29)
oy Bmas 106 445 (-85.4, 297)
50 4.83 1.52 (-1.70, 11.4)
H 2.36 0.308 (1.03, 3.68)
B 1.13 0.125 (0.595, 1.67)
T 908 304 (-399, 2214)
T50 5.31 0.746 (2.10, 8.51)
H 3.57 0.163 (2.87, 4.27)




Table S3: Fitting parameters of the basal response level, [ DMOG] = 0 mM (Fig. S5B). The distributions
are given by Egs. 19-21. AIC denotes Akaike information criterion based on which a better fitting
distribution is chosen.

Time Distribution AIC  Parameter Estimate Std.Err. 95% CI cv?
otz e U OMIT (O DR
B gamma -1270 Z :faﬁie (1).502263 (2)2330509 E(l)%()655§5,7()).0273) 0-0066
v o b BT 00000
oo o O DO 000
M g -1510 S §f§§e (1).207312 (2):800494 E(l).zgéog?,)lg.()?m) 0-0079
webil 20 DU G Doz (aoskaom) 09090
B
O gamma -1770 ]; :?:126 (2)900192 (2):800193 E(l)?()(jfsé(,mo).0196) 0-0050
G S T




Table S4: Fitting parameters of the maximum response level, [DMOG] = 4 mM (Fig. S5C).

Time Distribution  AIC  Parameter Estimate Std.Err. 95% CI cv?
o, shape  0.107 0.000907  (0.105, 0.109)
log-normal 1590 "y cale 164 0.00111  (1.633, 1.633) -0
4h k:, shape 88.1 1.36 (85.4, 90.8)
gathina 1690 " cale 0.0584  0.000905 (0.0566, 0.0602) -0
. k, shape 10.6 0.0242  (10.52, 10.62)
Weibull 29703 seale 5.27 0.00139  (5.26, 5.27) 0-013
Weibull B k, shape 2.65 B B 0.16
corrected (*) A, scale 1.26 ’
o, shape 0.109 0.00106  (0.107, 0.111)
logmormal — -1520 "0 Gale 171 0.00120  (L706, 1.711) 012
8h k, shape - - - _
gamma NA 0, scale B B B B
. k:, shape 10.4 0.0287  (10.3, 10.4)
Weibull 28403 geale 5.67 0.00185  (5.665, 5.672) 014
Weibull B k, shape 3.37 B B 011
corrected (*) A, scale 1.70 '
o, shape  0.0584  0.000577 (0.0572, 0.0595)
log-normal 1130 0 ale 1,84 0.000706  (1.837, 1.839) 0034
16h k:, shape 294 5.6 (283, 305)
gamma 1160 cale 0.0214  0.000410 (0.0206, 0.0222) V034
. k, shape 18.9 0.0727  (18.8, 19.1)
Weibull 2H0 ) eale 6.36 0.00157  (6.361, 6.367) 0043
Weibull B k, shape 10.5 N B 0.01
corrected (*) A, scale 2.53 ’

(*) Rimax is corrected for the variability in basal level by subtracting the mean and variance of 5. We
use the corrected values of shape and scale parameters to sample the responses shown in Fig. 5C in the
main text.

Table S5: Fitting parameters of the response threshold distribution (Fig. S5D). We fit g.,: distribution
given by Eq. 17 to obtain parameters .59 and o.50, which are scale and shape parameters of the
log-normal distribution that determines x5y variability.

Results of the fitting:

Calculated stats of the x5¢ distribution:

Time Parameter Estimate Std.Err. 95% CI Mean Median StDev CVZX,
B Zﬁig -16.17593 8:323 501535 16.7116)) 0.87 045 1.44 272
sho O ?5?5’(?9 8: 13? 5?6.5852’715’2) 118 076 139 138
T o Ee A gggz 8?3 177 157 090 026
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Table S6: Evaluation of conditions 1 and 2 (Egs. 10 & 14) using parameters calculated from experimental
data: H — response steepness, 0,59 — shape parameter of x5q distribution, m,59 = e#*5° — median of x5
distribution, where .50 is the scale parameter of x5y distribution. The minimum and maximum value
of DMOG limit the range of treatment for which bimodality can arise.

Estimated from the experiment: Condition 1:  Condition 2:
H  shape, o450 mgs0 =et=®  CVZ, | H* 025 >2 [DMOG], ,  [DMOG], ..
4h  1.56 1.15 0.45 2.72 3.22 0.32 0.64
8h 2.36 0.93 0.76 1.38 4.82 0.38 1.55
16h  3.57 0.48 1.57 0.26 2.97 1.40 1.76
(A) _ Birpodality (B) (c)
e Sa :,T;S;S,,:gzt T=01 03 08 15 107
8.966 + 54 range g [ ee— t2mp | Quantization:
o B1E4 L %3 5 1 —1bit
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Figure S6: Numerical quantification of bimodal regime from experimental data. (A) Bimodality region as
function of Hill coefficient, H, and shape parameter of the x5y distribution, o,59. Colour coding indicates
the width of admissible input range that yields a bimodal distribution (cf. Fig. S2). Points indicate H
and o050 estimated from experiments. (B) Predicted differential entropy of output distributions at 16h
after treatment with [DMOG] = 1.6nM (median of the threshold distribution) for a range of threshold
variability. Steepness H = 3.57 (Table S2); g is Weibull-distributed with & = 15.8 and A = 3.91
(Table S3); Ryae is Weibull-distributed with & = 10.5 and A = 2.53 (Table S4); the median of the
threshold distribution m,59 = 1.6. Since the distributions are sampled numerically, Shannon entropy is
calculated for decreasing histogram bin sizes (or increasing quantisations) to give the best approximation
of the entropy of the continuous density. Threshold variability CV.%, = 0.26 (0,50 = 0.48) is estimated
from the experiment at 16h post-DMOG (Table S5). (C) Predicted ODD-GFP distributions for some
values of CV%, from panel B.
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