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A major feature of an adaptive immune system is its ability to generate B- and T-cell clones capable
of recognizing and neutralizing specific antigens. These clones recognize antigens with the help of
the surface molecules, called antigen receptors, acquired individually during the clonal development
process. In order to ensure a response to a broad range of antigens, the number of different receptor
molecules is extremely large, resulting in a huge clonal diversity of both B- and T-cell receptor
populations and making their experimental comparisons statistically challenging. To facilitate such
comparisons, we propose a flexible parametric model of multivariate count data and illustrate its use in
a simultaneous analysis of multiple antigen receptor populations derived from mammalian T-cells. The
model relies on a representation of the observed receptor counts as a multivariate Poisson abundance
mixture (m PAM). A Bayesian parameter fitting procedure is proposed, based on the complete posterior
likelihood, rather than the conditional one used typically in similar settings. The new procedure is
shown to be considerably more efficient than its conditional counterpart (as measured by the Fisher

information) in the regions of m PAM parameter space relevant to model T-cell data.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent advances in experimental molecular genetics, such as
multigene, single cell quantitative PCR assays, DNA microarrays,
or high-throughput RNA sequencing (Wang et al., 2009), have
challenged the traditional approaches to analyze biological data
and pushed the boundaries of modern statistical science. This
seems especially the case in the field of immunology, where it is
now possible to massively sample the antigen receptors expressed
by the body’s lymphocytes known as T-cells (or, similarly, B-cells)
and designed to help them recognize foreign, antibody-generating
molecules or antigens. In principle, the immune responses to
antigens could be evaluated quantitatively by examining the
counts of different T-cell clonotypes collected into the samples,
according to their unique T-cell receptors (TCRs). However, in
view of the potentially enormous diversity (i.e., the number of
distinct clonotypes) of the underlying populations and the compli-
cated data collection process (Correia-Neves et al., 2001; Wang
et al.,, 2010), a method relying solely on the empirically observed
counts may be very unreliable, due to the under-sampling bias and
the frequent clonotype miscalls in the sampling procedures (cf., e.g.,
Mamedov et al., 2011). Whereas the clonotype miscalls, which
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typically occur due to the mechanistic sequencing errors, can often
be corrected via the post-processing procedures (see, e.g., Bolotin
et al., 2012), the under-sampling of the TCR clonotypes presents a
statistical challenge, and seems to require a special approach.
Motivated by the experimental data arriving from TCR populations
in mammalian studies, the current paper presents one possible
solution, in a form of a unified, model-based statistical methodol-
ogy designed to comprehensively address the issue of TCR profiling.

In order to appreciate the difficulty of sampling TCR popula-
tions, let us briefly recall that the T-cell receptors are surface
molecules of heterodimer proteins with two chains: « and f (in
ofp T-cells) or y and § (in yo T-cells). The genes encoding these
proteins are generated by the so-called V(D)] DNA recombination
in the TCR variable domain during thymic T-cell development.
In this process, the T-cell precursors or thymocytes randomly
recombine different V (variable), D (diverse), and ] (joint) gene
segments and assemble the mature gene encoding a specific TCR
chain. By enumerating all such possible recombinations, one
concludes that there are possibly 10'® distinct TCR chains in
humans (Murphy et al., 2011) and 10" in mice (Davis and
Bjorkman, 1988). This enormous size of a TCR repertoire (i.e., a
collection of distinct TCR molecules or clonotypes) enables the
immune system to identify a vast number of antigens by com-
plementing their molecular shapes in the so-called complemen-
tarity determining regions or CDRs. The CDRs determine the T-cell
affinity and specificity for particular antigens. In the amino acid
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sequence of the variable domain of an antigen receptor there are
three CDRs (CDR1, CDR2 and CDR3), arranged non-consecutively:
CDR1 and CDR2 are found in the V region of a polypeptide chain,
and CDR3 includes some of V, all of D and ], as well as some other
TCR regions. This complicated CDR structure creates additional
challenges in properly identifying different receptors.

Another important molecular mechanism responsible for
the diversification of the TCR populations is based on a major
histocompatibility complex (MHC)—a cell surface molecule which
regulates T-cells lineage commitment during their thymic devel-
opment process. During that process, the thymocytes with TCRs
selected by MHC class Il become the so-called CD4+ T-cells, and
those with TCRs selected by MHC class I become the so-called
CD8 + T-cells (see, e.g. Wong and Janeway, 1999). For a more in-
depth overview of the TCR biology, the reader is referred to one of
the standard references, like, e.g., Murphy et al. (2011).

The frequency of the unactivated (or naive) T-cell clones in normal
individuals is minuscule; however, once a naive T-cell expressing
appropriate TCR encounters antigen, it becomes activated and
expands, forming a clonal population of cells, all expressing the same
TCR. The analysis of such clonal expansions allows one to study the
conversion between different functionally committed T-cells, which is
a crucial step in understanding the basic molecular mechanisms of
adaptive immunity functions in health and disease, such as infection,
autoimmunity or transplantation (Kedzierska et al., 2008). Moreover,
high individual convergence of TCR CDR3 amino acid sequences
(Venturi et al,, 2011) and our ever-expanding knowledge on their
specificities (Venturi et al., 2008), suggest the potential in the near
future for TCR-based diagnostics of various infectious and pathologi-
cal states (cf, e.g., Kedzierska et al., 2008).

The goals of a typical statistical TCR profiling study are to
determine (i) a diversity (i.e., the number of different clonotypes),
(ii) an associated clonal distribution, and (iii) an overlap (or
similarity) among different TCR counts sampled from various
T-cell populations, often referred to as TCR repertoires in the
immunological literature. With this in mind, the purpose of the
current paper is twofold. First, we would like to briefly introduce
to the quantitative biology community a method for comparison
of multiple populations via the hierarchical clustering algorithm
based on a class of multivariate count distributions, known as the
multivariate Poisson abundance (mixture) models or m PAMs. As
we show below, this approach may be broadly applied to
simultaneous comparison of TCR repertoires obtained with the
help of many standard biological assays, in most circumstances of
practical interest. Secondly, and perhaps more importantly, we
would like to propose a flexible, and in some sense optimal,
inferential procedure for identifying the m PAMs parameters and
subsequently carrying out the repertoires’ clustering. We argue
that our proposed method of TCR profiling allows one to not only
compare graphically the clustering patterns, but also to analyze
them quantitatively and, in particular, to attach a measure of
uncertainty to the clustering hierarchy via the model-based,
explicit confidence bounds.

Whereas the multivariate Poisson abundance models have been
introduced in the context of TCR studies before (e.g. Rempala et al.,
2011), they have suffered from a potentially very inefficient
method of parameter estimation based on the truncated condi-
tional (or partial) likelihood. Consequently, although they were
able to deal with (iii) and to some extent with (ii) above, it was
much harder for the conditionally fitted m PAMs to properly
address the clonal diversity (i). Moreover, the inefficiency of the
conditional parameter estimation often resulted in poor clustering.
An example of the latter is provided below, when we compare
different methods of analysis on some experimental data.

The paper is organized as follows. In the next section (Section 2)
we briefly recall the basic notions related to hierarchical clustering

algorithms and m PAMs, as well as propose an MCMC-based
algorithm (Algorithm 1) for the required statistical inference. In
the same section, we also describe a specific m PAM known as the
multivariate Poisson-lognormal model (MPLN) which is used for all
our numerical examples throughout the paper. At the end of Section
2, we briefly discuss some computational aspects and limitations of
our proposed inference method. In Section 3 we show, with the help
of the MPLN model, how one may apply the tools of Section 2 to TCR
data. Specifically, we analyze a dataset consisting of four TCR
repertoires obtained from CD8+ o3 T-cells in transgenic mice with
compromised MHC-restriction and chain rearrangement abilities
(Ignatowicz et al., 1996). The results of the analysis via the MPLN
model and Algorithm 1 are compared with those from the alter-
native approaches used earlier in the literature, and the diffe-
rences are discussed in the context of their biological implications.
A review of our main points, along with some conclusions, is given
in Section 4. For completeness, we discuss in the Appendix the
statistical efficiency, as measured by the Fisher information, gained
with the new proposed fitting method.

2. Clustering with multivariate abundance models
2.1. Hierarchical clustering

When studying the development of TCR populations it is
often desirable to compare them simultaneously against some
fixed baseline. This is the case, for instance, in clinical studies
where one is interested in quantifying the “divergences” of TCR
repertoires, sampled at various disease stages, from a control one.
An attractive quantitative approach to this problem is offered
by the hierarchical clustering approach, as often applied to DNA
microarrays (Thalamuthu et al, 2006). Let us briefly recall
some basic facts related to hierarchical clustering. For additional
details, one may refer, for example, to Chapter 14 of Hastie et al.
(2009).

For a given set of m>1 TCR samples of interest, their
hierarchical clustering depend on a particular pairwise dissim-
ilarity (distance) index Q(i,j) calculated between all distinct pairs
of samples (i,j). In our setting, O(i,j) will be derived from m PAMs
as discussed below, but, in general, any appropriate distance
measure may be used. For instance, some crude dissimilarity
indices could be based simply on the joint TCR species presence/
absence data, i.e.,, the number of TCR species shared by two
samples and the number of species unique to each of them
(see discussion in Legendre and Legendre, 1998). The two oldest
and most widely used examples of such indices are based on
the classical Jaccard and Serensen similarity indices prevalent
in ecological biodiversity studies (Magurran, 2005). For a given
dissimilarity index Q, a stepwise procedure is employed, which
results in a tree-like cluster structure (graphically summarized by
a dendrogram or a “tree diagram”) with the clusters at each level
of the tree created by merging or splitting clusters at the next
level, according to the appropriately aggregated values of Q.
Unlike in some other clustering algorithms, here there is no need
to specify in advance the number of clusters to be created at each
level. The hierarchical clustering is performed via either agglom-
erative methods, which proceed by series of fusions of the original
m TCR repertoires into larger groups, or divisive methods, which
successively separate repertoires into finer ones. As agglomera-
tive methods are more commonly used, we also choose one of
them for the TCR data below.

The extent to which the hierarchical structure produced by a
dendrogram actually represents the data itself can be judged
by the cophenetic correlation coefficient. This is the correlation
between the m(m—1)/2 values of Q(i,j) and the corresponding
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cophenetic dissimilarities derived from the dendrogram. The
cophenetic dissimilarity between any two samples (ij) is the
value of the intergroup dissimilarity index at which i and j are
first clustered together. The cophenetic correlation coefficient
may be used to numerically assess to what extent various
dissimilarity indices reflect the true pattern of the data, with
higher positive values indicating better agreement.

2.2. Multivariate Poisson abundance models

The idea of modeling count data with a Poisson abundance
model (PAM) goes back to Fisher et al. (1943) where it was
proposed as an extension of a univariate Poisson model to the
over-dispersed data (see, e.g., Sepulveda et al., 2010). In turn, m
PAM may be viewed as a multivariate extension of PAM.

As all vertebral T-cell receptor populations originate in the
thymus, we denote the size of the initial thymic TCR population
(i.e. the number of distinct clonotypes) by M and regard it as a
parameter in the subsequent analysis of the m TCR repertoires of
interest (in our specific data example below, m=4). Since PAM
assumes (see, e.g., Chao, 2006; Rempala et al., 2011) that the
recorded counts are arriving from a mixture of Poisson processes
in some time interval, we consider therefore the observed counts
of the ith clonotype (i=1,...,M) as arriving according to an m-
variate Poisson process with the marginal rates (41,42,...,4m).
If the detectability of individuals is assumed to be equal across
all clonotypes (which is typically the case in TCR repertoire
sequencing), then the rates may be interpreted as clonal species
abundances (Nayak, 1991).

Since antigen receptor clonal size distributions are generally
regarded as having heavy right tails, the population-specific
species abundance rates (41, A2, ..., Am) may be modeled jointly
as a random vector from a mixing distribution with density
go(21, .. .,Am), where 0 is a vector of parameters. According to m
PAM, the clonal counts represent therefore a multivariate sample
from a mixture distribution of m conditionally independent of
Poisson variates (cf., Rempala et al,, 2011)

J;'ex ,
polky, ... km)—/ / { P A):|g9(}~1.m./lm)d/hly-..,d)vm,
i=1

k;!

ki=01,...,i=1,...,m, (1)

where py(ky,...,kn) is the probability that a TCR clonotype is
present k; times in the sample from the ith TCR population.
Let fky....k,, D€ the observed (empirical) count of such clonotypesl

M e

km > 0(fk1 ..... m

km )]flq, km

M!

= wi—pypi Po© - 01" P11=py(0, ... 00

[po(O, .

D kq,....k Fykim
{M} 2

1-py(0, ...,0)

! That is, the count of all clonotypes which appeared k; times in sample one,
ko times in sample two, etc.

Note that the above implies that the likelihood function for M
and 0 can be factored as

..... kn 1D, 3

where Eb(M,()|D) is the likelihood with respect to D, the binomial
random variable with parameters (M,1 pH(O )) and

et al,, 2011; Engen et al., 2002) particularly when the value of M
is not of immediate interest. In Section 1, we have referred to this
method as the “partial” or “conditional” inference. Unfortunately,

fitting considerations and, depending upon the particular form of
the distribution p,, may be far from optimal (see Appendix).
Despite this drawback, the conditional inference method seems
quite popular in the literature, as it provides a viable alternative
to the generally difficult problem of directly maximizing the full

Whereas the direct frequent1st inference for (M,0) is challenging,
it seems that adopting a Bayesian viewpoint may circumvent some
of the difficulties. Indeed, considering m PAM within the Bayesian
framework, we may regard g, as a prior distribution on the rates
vector (41, ...,4m) and, accordingly, (M,0) as the underlying hyper-
parameter. Consequently, under the hierarchical Bayesian model
with the improper (uniform) prior on (M,0), we may regard the

the posterior distribution of M,0, }1, coirdm |y

interpretation leads to a straightforward MCMC approach in the
(M, 0) inference problem (cf., also Barger and Bunge, 2008 who, in a
different context, applied a similar approach or Rodrigues et al.,
2001 who applied this idea for the univariate case).

2.3. MCMC inference for PAM

First, note that if £(M,0|{fy, ,}) is viewed as the posterior
.kn}) (with a non-informative prior), then
,,,,, k,}) has a negative binomial (nb) distribu-
tion. Indeed, with this interpretation M simply describes the number
of trials needed for D successes to occur, where each success
has a probability 1-py(O,..., kn D™
nb(D,1-py(0,...,0)). On the other hand, the conditional
(0|M,{fy,...x,}) may be obtained by the marginalization of the joint
posterior distribution (0,41, ...,Am|M,{fy, _x,}) over g,, with the
sampling from that distribution done via the usual Metropolis—
Hastings method (see, for instance, Andrieu et al, 2003). These
considerations may be summarized in the Gibbs-sampler algorithm
with a nested Metropolis—Hastings step described below. Upon
convergence, the algorithm produces samples from the posterior
distribution (M,0,41, ....Am|{fk,. .k
{fk,...k,})- The empirical mode of the latter may be viewed as an
approximate maximal a posteriori estimator (MAP) which, in this
particular case, is also an approximate MLE based on the complete
..k, })- The advantages of utilizing the estimate
of 0 based on the complete rather than the partial likelihood (£ vs.
L) may be seen in terms of the gain in the Fisher information, as
briefly described in the Appendix.

Algorithm 1. Hybrid Gibbs sampler.

1. Initiate with M=D.
2. Perform a Metropolis—-Hastings step for the target distribution
(0,24, ..
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3. Evaluate py(0, ...,0) for the sampled value of 0.
4. Sample M value from nb(D,1—py(O0, . ..,0)) and return to Step 2.
5. Repeat 2-4 until convergence.

Assuming that the draws from g, are easily obtained, the mode
of the empirical posterior distribution produced by the algorithm
above will give an approximate full likelihood MLE (M,0) for any
PAM of the form (1).

Note that the (profile) pointwise M estimate is approximately

M~ D/(1-p 0, ....,0) )

which is the estimate considered in Rempala et al. (2011), but
without a clear justification (for some earlier discussion, see also
Sanathanan, 1972; Bulmer, 1974).

It is perhaps also worthy to notice that the use of a proper
prior in the above algorithm generally may not be beneficial. On
one hand, in order to retain the simplicity of the conditional
sampling in Step 4, a prior distribution conjugates to the negative
binomial should be used, for instance, a univariate PAM distribu-
tion. However, it is easy to see that in our setting this class of
priors would make the posterior distribution unduly sensitive to
the hyper-parameters, leading to a biased inferential procedure.
On the other hand, a more sophisticated, non-conjugate prior
distribution would necessarily add to the computational over-
head, as it would require an additional Metropolis—Hastings step.

In what follows, we apply Algorithm 1 in the case when g is
the density of a multivariate lognormal random variable, which in
turn makes p, the mass function of a multivariate Poisson-
lognormal distribution (see, e.g., Aitchison and Ho, 1989).

2.4. Poisson-lognormal dissimilarity index

Let us now derive a dissimilarity index Q associated with the
particularly convenient (for our purpose) m PAM model which we
shall use in our numerical examples in the next sections.

Although there are many possible parametric multivariate
mixture models, recent works by Sepilveda et al. (2010) and
Rempala et al. (2011) suggest that lognormal mixing distributions
may often be especially appropriate for TCR repertoires modeling.
Because of this, we consider henceforth a multivariate model based
on lognormal variates, which is a straightforward extension of the
bivariate model considered in Rempala et al. (2011). Recall that
under the Poisson abundance model discussed above, the number
of individuals sampled from any given receptor clone species with
abundance 4 is Poisson distributed with mean A. If one assumes
that In / is normally distributed with mean u and variance ¢2, then
the vector of clonotypes sampled from all M species comprises a
sample from the Poisson-lognormal distribution with parameters
0 = (1,6%), where p and ¢2 are the mean and variance of the log-
abundances. The corresponding mass function may be written as

pik: 11,6%) = 1 (o u)p(u) du, ®)

where ¢(.) is the standard normal density function and

exp(uok+ ik +e~ Mo+ )
k! ’

is the re-parameterized Poisson distribution. Similarly, the
m-tuples of clonotype counts from m different repertoires consti-
tute a random sample (of size M) from the multivariate Poisson-
lognormal distribution (MPLN), a special case of m PAM given in
(1). The log m-abundances of the clonotypes have therefore the
multivariate normal distribution with mean vector u and variance-
covariance matrix X. Let ¢(uy, ..., un; p) denote the normal multi-
variate density with correlation matrix E = [pj], zero means, and unit

g(uo.u)= k=0

variances. The distribution of MPLN is given in terms of the multi-
variate probability mass function py(ki,...,km) =p(ki, ... .km,p,2)
for k; > 0 where

oo [ee] m
p(kl,...,km.g,Z)=/ / {Hgki(ui.oi,ui)}

i=1

xd)(u1,...,um;ﬁ)du1,..., dup,.

From the above formula we can obtain any other MPLN of lower
dimension by integrating out (marginalizing over) an appropriate
subset of m variables.

Under the assumed MPLN model, the dissimilarity index Q of
Section 2.1 may be conveniently defined in terms of the entries of
the rescaled matrix X. This choice corresponds to the correlation-
based dissimilarity measure discussed, e.g., in Rempala et al.
(2011).

Denoting the mean and variance of the ith MPLN marginal by
o, [31-2, respectively, we have

% = exp(t;+072/2)
Bf = oi+0[exp(a?)—1] ©

for i=1,...,m. The correlation coefficient values evaluated for all
the possible pairs (i,j) of MPLN distribution marginals give there-
fore the following dissimilarity index?:

ociocj\exp(pijaioj)—l |

Qui)=1- :
/%051 + aulexp(a?) 1)1 +aylexp(a?)~ 1)

)

In practice, the above quantity needs to be approximated via
the sample estimate Q(i,j) with 0 =(£,2) taken as the mode of
an empirical posterior distribution obtained via Algorithm 1, that
is, an approximate MLE for 0. In this way, the fitted MPLN
distribution defines uniquely the values of the dissimilarity index
Qy and, consequently, the corresponding hierarchical clustering
for the analyzed TCR repertoires. We shall illustrate this process
with a data example in Section 3.

Whereas for the particular dataset considered in Section 3, the
computational cost was only moderately high, in general, the
overall processing time is seen to increase quickly with the value
of m. To illustrate this for some benchmark CPU processing times,
the relative computational cost of fitting an MPLN model using
Algorithm 1, as a function of the dimension m of the count
distribution, is provided in Table 1. Note that while the processing
time increases with m, the amount of CPU effort per model
parameter remains relatively steady. From the computational
perspective, it seems therefore preferred to fit a single high-
dimensional model, rather than multiple lower-dimensional ones.
For instance, based on the values in the table, for m=10 the
pairwise fitting algorithm described in Rempala et al. (2011),
which uses the multiple conditional fitting of the bivariate model
in order to obtain the final MPLN fit, is seen to require on average
(19 =45 min of CPU time, as opposed to about 10 min for a single
fitting of the full MPLN model.

3. Application to TCR data analysis
3.1. Biological data
The animal TCR repertoire samples considered here are obtained

from a thymus of a TCRmini mouse (see, e.g., Pacholczyk et al., 2006)
in which all T-cells have a restricted range of possible «ff TCR

2 Note the typo in the similar formula given in (3.14) of Rempala et al. (2011)
where the absolute value needs to be added to the numerator and the factor of
2 needs to be removed.
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clonotypes. Specifically, the receptors on the o T-cells from TCRmini
mouse differ from each other only in the CDR3 region of the o chain
(all CDR1 and CDR2 regions and CDR3 f chain are fixed). This
restricted rearrangements model allows one to more easily analyze
the diversity of the TCR repertoires as well as to track in vivo the fate
of individual T-cell clones. Consequently, as our experimental dataset,
we take a collection of four different TCR samples harvested from the
TCR repertoires of CD8+ T-cells in different TCRmini mice popula-
tions. The first two sampled repertoires were (i) a “baseline” TCRmini
(denoted WT) which expresses both all class I MHC as well as a
particular class I MHC (called AbEp) and (ii) a modified TCRmini
where all Ab molecules are bound with a single Ep peptide (denoted
AbEp). Two additional TCR repertoires were sampled from the two
populations of irradiated AbEp and RAG—/— mice (Kawano et al.,
1997) with reconstituted bone marrows taken from the WT mice
population. The irradiated AbEp and RAG—/— mice are referred to
below as radiation chimeras and denoted by AbEp(c) and RAG(c),
respectively. The TCR samples from the first two populations of the
CD8+ T-cells (WT and AbEp) were collected using labor-intense, but
also more reliable, single cell sequencing (see, e.g., Warren et al.,
2009). In contrast, the samples from the TCRs of radiation chimeras
were obtained via high-throughput sequencing using a 454 platform
(see, e.g., Lai et al., 2012). This difference in the collection method is
expected to influence the relative sampling intensity (see above), but
not directly the dissimilarity index pattern across the four repertoires.
Due to the biology of the specific animal models, one would expect
to see strong dissimilarity between AbEp (single peptide) and the
remaining three populations. The relations among other repertoires
are less clear a priori.

3.2. Summary statistics

The complete dataset consisting of all sequenced receptors in
four repertoire samples (for a total of D=310 different

Table 1

CPU usage in MPLN model fitting. Average increase of CPU processing time in
Algorithm 1 for every 1 min (or about 100 iterations) of the CPU processing for the
bivariate model fit (m=2). The comparison is based on the average time runs for
two chains in a simulation study using a HP Pavilion dv7 Notebook PC with a 64-
bit version of Windows 7, 3.75 GB of usable RAM, and Dual-Core M620 AMD
Turion 2.50 GHz processor.

Dim. (m) No. of params Avg. CPU time (min)
2 5 1.00
3 9 1.47
4 14 2.38
5 20 3.40
10 65 10.05

clonotypes) is provided as supplementary material, which may
be downloaded from the journal site. The pictorial summary of
the empirical frequencies for each of the four TCR repertoires
considered is presented in Fig. 1, as a set of four frequency plots.
Each plot represents the number of observed counts for each
clonotype (some possibly zero, with frequencies over 200 trun-
cated for better visibility) observed in the respective population.
The ordering of the clonotypes remains the same across plots so
as to allow for direct comparisons. The summary statistics for the
data are provided in Table 2. In the notation of Section 2.2, let
Di=Y-ofY and n; =" (kf}, where f is the number of clono-
types observed k times in the repertoire i, i=1,...,4. The
observed values of D; and n;, based on all the observed clonotypes,
are presented in Table 2. The observed overlap between (i.e.,
presence in both) the combined chimera (¢) and mini (WT, AbEp)
populations was found at around 48% (which is consistent with
earlier findings, see, e.g., Pacholczyk et al., 2007).

It seems intuitively clear from the frequency plots that the two
chimera populations and the two remaining ones should be
clustered together. The goal of our analysis below is to quantify
and formally test this intuition.

3.3. Results

The results of the MCMC analysis in terms of the approximate
MLE values for (M,,u,Z’l) based on the MAP estimates obtained
via Algorithm 1 along with their credibility bounds are presented
in Table 3. The required computational analysis was performed
with the help of the R library rjags and the JAGS software
(R Team, 2010; Plummer, 2003) where for technical reasons,
rather than Z, the log-abundances precision matrix ~~' was
estimated. For the purpose of the analysis, the non-informative
independent improper priors were used for (M,u,~!). Recall
that the marginal parameters u and o2 are related to
the marginal means and variances of the Poisson-lognormal
variates by the formula (6).

The marginal values of the repertoire-specific parameters in
both types of repertoires (chimera and mini) were found to be
of similar magnitude (with estimated values of p parameters
between —3.6 and —1.7 and ¢~2, denoted in the table as ¢;!
(i=1,...,4), between 0.4 and 0.7. Overall, the numerical values of
the parameters indicated the smaller Poisson-lognormal means
for the restricted-repertoire mice, as compared with the wild-
type, although this finding may be confounded with the fact that
the sampling intensity of the chimera populations was markedly
different. In general, the issue of unequal sampling intensity may
present a challenge for the type of data considered here (see, e.g.,
discussion in Rempala et al., 2011 on the effects of sampling

TCR Data
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Fig. 1. Frequency plots for TCR data. For better visibility, the plot for the AbEp population was truncated at 200.
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Table 2

TCR summary statistics. The observed values of D; and n; for each sample in the
TCR data. The clonotype overlaps between the pooled chimera (c) populations and
the pooled “mini” ones (WT, AbEp) was approx. 48% or 148 out of a total of D=310
different receptors.

ADbEp(c) RAG(c) AbEp WT
D; 110 111 180 150
n; 2009 6160 657 628

Table 3

MPLN model estimates for TCR data. The estimated posterior values of the log-
intensity means, the missing species number and the entries of the precision
matrix (X!) for the log-abundances in four TCR repertoires considered, along
with the bias-corrected, two-sided 95% credibility bounds generated via MCMC.
For the purpose of comparison, the corresponding values obtained by maximizing
the conditional likelihood are provided in parenthesis.

Value I3 Hay H3 Hy M-D
95%Lo —-3.38 —3.62 —-1.70 —-2.37 266.70
95%Up (=7.11) (-8.52) (—4.91) (-6.82) -
—4.21 —4.46 —-2.19 —2.90 177
—2.62 —2.84 —-1.28 —1.88 379
o 03 033 04 013
95%Lo 0.41 0.50 0.72 1.75 —-0.17
95%Up (1.12) (1.07) (0.51) (1.64) (—0.48)
0.27 0.34 0.42 1.04 -03
0.64 0.72 1.31 3.05 —-0.04
013 o1 033 034 034
95%Lo —-0.30 —-0.28 —-0.07 —0.63 0.57
95%Up (—0.44) (—0.49) (-0.02) (-0.51) (0.24)
—-0.64 -0.79 -0.29 —1.00 0.14
-0.14 —0.01 0.10 —-0.34 1.44

intensity on the MPLN estimates). Fortunately, for the diversity
analysis via hierarchical clustering as presented below, the
sampling intensity by itself was irrelevant and had been therefore
incorporated into the estimates of the means for marginal log-
abundances. The MLE value for the missed receptors (M—D) was
found as approximately 267, based on the posterior mode. This
value is consistent with the previous studies on TCR diversity in
mini mice (Pacholczyk et al., 2006) and gives the approximate
percentage of the unseen species as 50%. The diversity estimate
along with its credibility bounds is presented in the right-most
column at the top of Table 3.

In Table 3, for the purpose of comparison, we have also
provided (in parenthesis) the estimated values of the MPLN
model parameters obtained using the conditional likelihood
model (i.e., via maximizing £, in (3)). These values were calcu-
lated with the help of the simple Newton-Raphson optimization
algorithm with random restarts (as provided by the poilog R
library, see Rempala et al., 2011). With the resampling option for
the error analysis turned on, the algorithm was computationally
comparable to MCMC in terms of the CPU usage. However, as seen
by comparing the entries in Table 3, the two sets of final
estimated values differ considerably, particularly with respect to
the MPLN shift parameters .

The goodness-of-fit analysis for the MCMC-fitted model was
conducted by means of the Bayesian y? statistic proposed recently
by Johnson (2004) and based on the MCMC samples obtained via
Algorithm 1. The difference between the MCMC samples and
the %2 distribution was not-significant (all p-values < 0.05), and
indicated a good fit of the MPLN to the data. In addition to the

goodness-of-fit testing, we have also performed more qualitative
comparisons of data against the random sample from the fitted
MPLN model via four marginal QQ-plots (Fig. 2). Except for the
first population, where an outlier is distorting the larger quantiles,
the remaining data quantiles plots seem to give a reasonable
indication of agreement with a random sample from MPLN.

The results of the MCMC-based hierarchical clustering analysis
of the four mice TCR repertoire samples are presented in Fig. 3.
The figure top-left panel shows the dendrogram obtained by the
agglomerative hierarchical clustering with a complete link func-
tion (see, e.g., Hastie et al., 2009, Chapter 14 for a definition)
under Q, dissimilarity index (7) where 0 = (u,2) is fitted by the
MCMC procedure outlined in Algorithm 1. For the purpose of
comparison, the remaining two top panels depict the alternative
dendrograms obtained (in the top-middle panel) under the fully
non-parametric index defined as Q(i,j) = 1— \an(i.j) , where ¢,,,(-)
is the non-parametric Pearson correlation coefficient between
samples i and j, and (in the top-right panel) under the index Q
where the MPLN parameters 6 are fitted via the conditional
likelihood inference (i.e., using the values listed in parenthesis
in Table 3). The latter two dendrograms are seen as representing a
very similar clustering pattern which is markedly different from
that obtained with the full-likelihood MPLN model. Although both
patterns describe a biologically plausible hierarchical structure,
which keeps the AbEp population away from the remaining ones,
the overall dissimilarity values based on the full MPLN are seen as
larger, which is somewhat more consistent with the biological
model. For a quantitative assessment of the consistency of
all three dendrograms with the data, we have calculated their
respective cophenetic correlations (see Section 2.1), along with
their confidence intervals. The sample-based values of the cophe-
netic correlation for different clusterings are presented in their
corresponding dendrogram plots. These values are also given
in Table 4, along with their respective credibility or confidence
bounds, based on the MCMC samples for the full MPLN, and on
the bootstrap method for both the Pearson correlation and the
conditionally fitted MPLN. In all three cases, the high values of the
correlations indicate the internal consistency of the clustering
with their corresponding dendrogram structures. However, the
value for the index Qg estimated via the full-likelihood MPLN MLE
is seen as slightly higher than the remaining ones, and hence that
clustering is preferred.

The remaining (bottom) panels of Fig. 3 depict the upper and
lower 95% credibility dendrograms (bottom-middle and bottom-
right panels, respectively). The fact that both display the identical
hierarchy tree indicates a strong robustness of the hierarchical
clustering in the full MPLN model against the sampling fluctua-
tions of the dissimilarity index. As in Rempala et al. (2011), these
credibility bounds were obtained by inverting the upper and
lower 2.5% quantiles of the Frobenius norm> of the dissimilarity
matrix [Qy(i,j)]. The density estimator of the Frobenius norm
distribution, with the upper and lower 2.5% quantiles marked as
the vertical lines, is shown in the bottom-left panel.

The result of the MCMC procedure in Algorithm 1, which
produced the samples used for clustering analysis above, is
presented in the left panel of Fig. 4 as the Gibbs sampler’s trace
plot based on 6000 steps, after discarding the initial 4000 steps
as the burn-in. For better visualization, only the projection of
the posterior samples onto the bi-variate subspace (llzl,IIZ~1Il)
is plotted, where |- I stands for the matrix Frobenius norm.
The Gelman-Rubin statistic R was used to diagnose the sampler

3 Recall that for any real matrix A its Frobenius norm lIAll is v/Tr(A" A). See also
the Appendix or, e.g., Golub and Van Loan (1996) for a general reference on
matrix norms.
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Fig. 2. Goodness of fit analysis for TCR data. Four panels illustrate the quantile plots of the data against a zero-truncated random sample from the MPLN model with
parameter values taken at the mode of the posterior distribution of (M,0). The dashed line represents y=x function. The agreement in the upper quantiles in
AbEp(c) populations is seen to be distorted by an outlier in the observed frequencies (outside the plot range).
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Fig. 3. Analysis results for TCR data. Top panels illustrate the final clustering via MPLN model (left) and the two alternative clusterings using (i) the empirical correlation
coefficient (middle), and (ii) the conditional MPLN. The corresponding values of the cophenetic correlations are given for comparison. Bottom panels show the Frobenius
norm density of the dissimilarity matrix Q, (left) as well as the credibility bounds for the MPLN clustering (middle and right).

Table 4

The estimated cophenetic correlation coefficients for clustering under Q, via the
full (MPLN) and conditional (Cond. MPLN) models as well as using the non-
parametric dissimilarity based on the Pearson correlation (Emp. Corr). The higher
value indicates better clustering. The 95% credibility interval based on the MCMC
runs is reported for the MPLN model coefficient, while for the remaining two the
95% confidence interval based on the bias-corrected bootstrap percentile method
is reported.

posterior mode (the MAP estimate) and the posterior mean (the
Bayesian estimate) of M—D.

Based upon the cophenetic correlation values, the clustering
analysis with the full-likelihood MPLN model is seen as the most
likely representation of the true relationships among the four TCR
populations. The inspection of the top-left panel dendrogram in
Fig. 3 along with its credibility bounds (the bottom-middle and
bottom-left panels) provides one with several biologically inter-

Dissimilarity index CC value 95%Lo 95%Up - - o Vel ‘ h
esting and, very importantly, statistically significant findings. First,
MPLN 0.992 0.987 0.997 as expected, the dissimilarity pattern revealed by the top-right
Cond. MPLN 0.924 0.794 0.986 PR -
ndrogram indi hat the TCR: mples from the original
Emp. Corr 0987 0,659 10 dendrogra cates that the TCRs samples from the origina

convergence (R values close to unity indicate convergence, see
Gelman and Rubin, 1992). For further illustration, the posterior
density of the unobserved species (M—D) is presented in the right
panel, indicating in particular a good agreement between the

AbEp mice CD8+ T-cells were the most different from the
remaining three sets of TCR data. This is likely due to the fact
that they were the only ones not in contact with class II MHC
bound with multiple peptides. Although this difference is also
visible in the alternative dendrograms (top-middle and top-right
panels) constructed under the competing dissimilarity indices,
in both cases it turns out not to be significant at 5% level, as
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Fig. 4. MCMC plots for TCR data. Left panel—the bivariate projection of the trace in the converged Gibbs sampler described in Algorithm 1 based on 6000 iterations and
4000 burn-in steps. The value of Rubin’s R statistic (above) and moving average plots both indicate convergence. Right panel—the posterior density of M—D based on 6000
iterations of the converged Gibbs sampler. The vertical line drawn at the mode gives an approximate value of the MAP for M—D given in Table 3.

measured by the alternative dendrograms confidence bounds (in
order to conserve space, we forgo the details of this additional
analysis here). Secondly, the MPLN clustering also indicates that
CD8+ T-cell TCRs of the AbEp chimera mice (c), which are
reconstituted with TCRmini WT bone marrow, more closely
resemble the TCRs of the WT mice that those of the AbEp mice.
This finding, if confirmed with other experiments, is potentially
quite significant as it may indicate that the thymus negative
selection (i.e., the self-destruction of certain clonotypes) is
an important discriminating factor between mice populations
TCRmini AbEp (MHC class Il-one peptide) and TCRmini wild-
type (MHC class II-many peptides).

Finally, the fitted MPLN model indicates that the overall
frequency patterns of chimera mice made them more similar to
each other than to the remaining two TCR populations. This
seems to be also consistent with the summary plots presented
in Fig. 1 reflecting, among others, the fact that the different TCR
harvesting method was used to obtain data from the chimera
populations. It is important to note that this last conclusion
cannot be reached by means of the dissimilarity analysis based
on either the empirical correlation method, or the partial like-
lihood fit of MPLN, as both are unadjusted for the unseen
clonotypes and sensitive to the large spikes of the empirical
frequencies. In contrast, the full MPLN model is seen to down-
weight the spikes as it adjusts for the estimated distribution of
the M—D unobserved TCR types (Fig. 4, right panel).

4. Summary and discussion

We have presented a method of analyzing multiple TCR
repertoires with a parametric model based on a multivariate
Poisson distribution, and more generally, on a class of multi-
variate count distributions known as the multivariate Poisson
abundance models (m PAMs). Whereas m PAMs have been used to
model T-cell counts in previous works, they have been typically
fitted by means of the truncated likelihood function, conditioned
on the number of observed species. Since this method leaves out a
factor in the complete likelihood function, such a fitting proce-
dure is likely to be less efficient, as illustrated here via the Fisher
information analysis discussed in the Appendix. As a remedy, we
have proposed a likelihood profiling method, which allows one
to fit the model using a complete likelihood function. Moreover,
we have shown that by introducing a set of improper non-
informative prior distributions on the m PAM parameters, the
fitting procedure may easily be carried out as a hybrid Gibbs
sampler. Such a sampler may be constructed using popular open
source software, like, e.g., JAGS or BUGS (Lunn et al., 2009). The
samples from the converged sampler may be then used to
perform the desired model diagnostics and error analysis, with

the marginal modes of the posterior samples corresponding to the
approximate respective MLEs. Computationally, the method is
seen as only marginally more demanding than the conditional
one, which in turn requires parametric resampling for the error
analysis.

Our proposed new approach to TCR analysis was illustrated on
biological samples from four CD8+ T-cell populations harvested
via two different laboratory techniques and involving two
TCRmini mice populations (one with and another without the
TCR recombination restrictions) and two chimera mice popula-
tions in which the bone marrow reconstitution was performed. In
order to identify the differences among these TCR populations,
the complete likelihood method was applied to fit a multivariate
Poisson-lognormal model. The resulting clustering based on
the covariance between the fitted model components was seen
to correctly identify the main underlying biological pattern
(a population with TCR restricted recombinations was seen as
markedly different from the remaining ones) as well as to provide
additional insights into the similarities among the remaining
repertoires which were missed by both a less sophisticated, condi-
tional MPLN analysis, and a simple non-parametric one based on the
Pearson-correlation.

Overall, the proposed MCMC method was found to be con-
ceptually straightforward and computationally feasible when
applied to TCR data from a sequencing experiment. As analyzing
such data starts to play a central role in modern studies on
acquired immune response, we hope the statistical methodology
proposed here could become standard in many circumstances of
practical interest.
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Appendix A. Efficiency in PAM inference

The relative gain in efficiency when fitting the PAMs described in
Section 1 by maximizing the complete likelihood £(M,0|{fy, .}

ing the Fisher information about 6 contained in Lc(0|{fy, _x.}.D)



J. Greene et al. / Journal of Theoretical Biology 326 (2013) 1-10 9

,,,,, k., })- For the purpose of such
an analysis, the latter may be treated as a function of the PAM
parameter 0 only, with M remaining fixed (to emphasize this fact, we
write £M(0|{f, 1. }) below).

In order to simplify notation and facilitate the numerical
calculations below, assume that there are K+1 classes k=0,...,
K < oo to which we assign the empirical counts {f,, _, }, denoted
now by xo, ...,Xg, with each class having multinomial probability
qr(0). In particular, let q3(0) be the probability of k=0 or an
“unobserved” class (that is, py(0, ...,0) in the notation of Section 1).
Then denote

s =LMOf .. gD = H qi(0)*.

Hk 0 X!
Denote by ¢; the differentiation with respect to 6;, the ith component
of the 6 vector, and recall that the Fisher information I (6) associated
with h(x

1n(0) = —E[6:6 (A1)
Note

B ‘ 0log h(x |0, '
6;0j log h(x = ’;061 (W ank(9)>

_ - 8 X 0;0;q,,(0

= k; ,(q 09 )) ZO PR

- Z ( (e)aqu(e)a,qk(9)>
k

Substituting this into (A.1) and applying the facts that EX;, = Mgq,(6)
and Y°F _ 8i6iqi(0) = ;6K _ o qi(0)) = 3:3(1) = 0, one obtains

K
In(0) = > Mq(0)~" 0:(0)3;qy(0). (A2)

The information decomposition, corresponding to the likelihood
decomposition

(cf, (3) in Section 1), is seen to be
[,(0) = I,(0)+1c(0), (A.3)

where Ip(0) and IC(O) are, respectively, the Fisher information
M

()= —5——r

"= 40140

K M(1—qo(0)? . [ qi(0) 0 (0)
0= 2. =00 6"(1—q0<9>)6f(17q0<6>)'

The natural statistic which measures the loss of efficiency
between I,(0) and I.(0), regardless of the value of M (which is
typically unknown), is the relative information

aiQo(g)aqu(H) and

_LO)
Ri©)= IROIN A4
where |-l is any reasonable matrix norm. For instance, in our

numerical example below we take it to be the Frobenius norm,
already discussed in the main body of the paper. Recall that it is
defined for any A=[a;] as the Euclidean norm of the matrix

entries. That is, IAll = , /Zija?j =/Tr(ATA) (cf, e.g., Golub and Van
Loan, 1996). Note that with this choice of II - Il and in view of (A.3)
0<RIO)<1

for any 0 for which the matrix I;(0) is positive definite. For a given
PAM, the loss of efficiency at any such point § may be defined

1-RI

sigma

0.2

0.0

Fig. A1. Loss of efficiency in the conditional Poisson-lognormal model. The values
of the relative information statistic 1—RI plotted as 2-d contours against the grid of
values (u,0) in the one dimensional Poisson-lognormal model given in (5). The
dark areas correspond to the very severe loss of efficiency and are located in the
region of the parameter space which contains the values fitted in Table 3.

therefore as 1—RI(f). An example for the Poisson-lognormal
model follows.

Appendix B. Example: truncated Poisson-lognormal model

The statistic RI may be used in a quite general setting. For
illustration, we shall apply it to the particular PAM defined by the
Poisson-lognormal model introduced in Section 2.4. Consider
the one dimensional model (5) with 0= (u,0) stratified into
seven classes (K =6) with class probabilities q,(0) = p(k; n,c) for
k=0,...,6 and q;(8)=>",.,p(k; u,0). The contour plot of the
values of 1—RI as a function of x and ¢ is presented in Fig. A1. The
grey scale is increasingly darker as the value of 1—RI approaches
unity. It is easily observed that when u < —1, the loss of efficiency
is anywhere between 25% and almost 100% (black region in the
left lower corner), depending on the value of . A quick inspection
of Table 3 reveals that this is the region of interest in our TCR
data study.

Appendix C. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org.10.1016/}.jtbi.2013.02.009.
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