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Mitogen-activated protein kinase (MAPK) cascades process a myriad of stimuli
received by cell-surface receptors and generate precise spatiotemporal guidance
for multiple target proteins, dictating receptor-specific cellular outcomes.
Computational modeling reveals that the intrinsic topology of MAPK cascades
enables them to amplify signal sensitivity and amplitude, reduce noise, and
display intricate dynamic properties, which include toggle switches, excitation
pulses, and oscillations. Specificity of signaling responses can be brought about by
signal-induced feedback and feedforward wiring imposed on the MAPK cascade
backbone. Intracellular gradients of protein activities arise from the spatial
separation of opposing reactions in kinase-phosphatase cycles. The membrane
confinement of the initiating kinase in MAPK cascades and cytosolic localization
of phosphatases can result in precipitous gradients of phosphorylated signal-
transducers if they spread solely by diffusion. Endocytotic trafficking of active
kinases driven by molecular motors and traveling waves of protein phosphorylation
can propagate phosphorylation signals from the plasma membrane to the nucleus,
especially in large cells, such as Xenopus eggs.  2009 John Wiley & Sons, Inc. WIREs Syst
Biol Med 2009 1 28–44

Signaling through a plethora of cell-surface
receptors, such as G-protein-coupled receptors

(GPCRs), receptor tyrosine kinases (RTKs) and
cytokine receptors, activates mitogen-activated pro-
tein kinase (MAPK) cascades, which function as
central integration modules for cellular information
processing.1–4 MAPK cascades play a pivotal role
in the control of fundamental cellular processes that
include cell growth and division, migration, and dif-
ferentiation. These pathways are evolutionarily con-
served in cells from yeast to mammals (Table 1) and
consist of several levels, where the activated kinase
at each level phosphorylates and activates the kinase
at the next level down the cascade. Phosphorylation
of each kinase is reversed by phosphatases, which
include serine/threonine, tyrosine, and dual-specificity
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phosphatases. The typical, three-tiered cascade com-
prises an MAPK, an MAPK kinase (MAP2K) and an
MAP2K kinase (MAP3K). In some cellular systems,
these kinases can be brought together by a scaffolding
protein.5,6 MAPK is activated by MAP2K-mediated
phosphorylation on two conserved residues, a threo-
nine, and tyrosine in the activation loop of the kinase
domain. Active MAPK can phosphorylate a multi-
tude of cellular targets, which include transcription
factors, other enzymes, and cytoskeletal proteins.7 In
contrast, the upstream MAP2K and MAP3K are not
as promiscuous as the MAPK, typically phosphory-
lating only the immediate downstream kinase in the
cascade.

Mammalian cells can express at least four pro-
totypical classes of MAPK cascades, extracellularly-
regulated kinase (ERK1/2), ERK5, C-Jun N-terminal
kinase (JNK), and p38 MAPK (Table 1), and at least
three atypical MAPK cascade types, ERK3/4, ERK7/8,
and nemo-like kinase (NLK), which do not follow the
classical three-tiered, dual-phosphorylation-signaling
structure.11 In this review we will focus on the dynam-
ics of information processing of the typical cascades,
choosing the well-studied ERK1/2 pathway as a main
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TABLE 1 MAPK Cascades from Yeast to Mammals

Cascade Example
Stimu-
lus(i)

MAP3K(s) MAP2K(s) MAPK(s) MAPK
Phos-
phatase(s)

Scaffold(s) Example
MAPK
Tar-
get(s)

Example
Cellular
Response(s)

Refs

Mammalian
ERK

Growth
factors,
adhesion

A-Raf,
B-Raf,
C-Raf
(Raf-1),
Mos

MEK1,
MEK2

ERK1,
ERK2

MKP1,
MKP3,
VHR

KSR,
MP-1,
β-arrestin,
Sef,
IQGAP,
CNK,
Paxillin,
MORG1

RSK,
Elk1

Proliferation,
migration,
differentia-
tion

8–10

Mammalian
JNK (SAPK)

Heat
shock,
ionizing
radiation

MEKK1/2/3/4,
MLK1/2/3,
ASK1,
Tpl2

MEK4,
MEK7

JNK1
(SAPKβ),
JNK2
(SAPKα),
JNK3
(SAPKγ )

MKP7,
VH5

JIP1/2/3/4 c-Jun,
c-Myc,
p53

Differentia-
tion
apoptosis,
inflammation

9–11

Mammalian
p38

Osmotic
shock,
hypoxia,
cytokines

MEKK4,
MLK3,
ASK1

MEK3,
MEK6

p38α,
p38β,
p38γ ,
p38δ

MKP1,
MKP5,
VH5,
MKP7

OSM,
JIP2/4

CHOP,
MNK,
MSK

Stress,
adaptation,
cell-cycle
checkpoint
control,
inflammation,
differentia-
tion

9–11

Mammalian
ERK5

Growth
factors,
oxidative
stress

MEKK2,
MEKK3

MEK5 ERK5 Unknown MEK5 MEF2,
RSK

Different-
iation

9,10,

12,13

Drosophila
D-ERK
(rolled,
ERK-like)

Growth
factors

D-RAF
(phl)

D-MEK
(dsor1)

D-ERK D-MKP; D-
MKP-3

Unknown D-RSK Proliferation 13–15,

Drosophila
D-JNK
(basket,
JNK-like)

Oxidative
and heavy
metal
stress,
heat
shock

MLK
(slpr)

D-JNKK
(hep)

D-JNK Puckered,
D-MKP4

Unknown D-Jun Stress
adaptation,
tissue
morpho-
genesis

13,

15–17

Drosophila
D-p38
(95E4 −
F1,
(p38-like)

Pathogens D-ASK1 D-MKK3
(lic)

D-p38a Unknown Unknown ATF2, D-
Jun

Stress
adaptation
and
Innate
Immunity

13,17

C. elegans
MPK-1
(ERK-like)

Growth
factors

LIN-45 MEK-2 MPK-1 LIP-1 KSR1,
KSR2,
CNK-1

LIN-1,
SUR-2,
EOR-1

Vulva
development,
migration,
meiosis

6,18

Volume 1, Ju ly /August 2009  2009 John Wiley & Sons, Inc. 29



Advanced Review www.wiley.com/wires/sysbio

TABLE 1 Continued

Cascade Example
Stimulus(i)

MAP3K(s) MAP2K(s) MAPK(s) MAPK
Phos-
phatase(s)

Scaffold(s) Example
MAPK
Target(s)

Example
Cellular
Response(s)

Refs

C. elegans
KGB-1
(JNK-like)

Heavy
metal
stress

MLK-1 MEK-1 KGB-1 VHP-1 Unknown GLH-1 Heavy metal
stress adaptation,
germline
development

6,19,20

C. elegans
PMK
(p38-like)

Pathogens,
oxidative
stress

NSY1 SEK1 PMK1 VHP-1 Unknown SKN-1 Innate Immunity,
neuronal
asymmetry,
oxidative stress
adaptation

6,20,21

S. cerevisiae
Fus3

α-factor Ste11 Ste7 Fus3 Msg5,
Ptp2/3

Ste5 Ste12 Mating 22

S. cerevisiae
Kss1

Lack of
nutrients

Ste11 Ste7 Kss1 Msg5,
Ptp2/3

Unknown Ste12,
Tec1

Invasive growth 11,22

S. cerevisiae
Hog1
(p38-like)

Osmotic
stress

Ste11 Pbs2 Hog1 Ptp2/3,
Ptc1

Pbs2 Unknown Osmotic stress
adaptation

22

MAPK cascades are conserved from yeast to mammals, respond to a myriad of stimuli, and produce diverse cellular outcomes. The biological diversity of
MAP3Ks, MAP2Ks, MAPKs, MAPK phosphatases, scaffolds, and MAPK targets allows flexible yet robust information processing.

example (which is frequently referred to as ERK).
MAPK cascades convert diverse inputs into differ-
ent cell fate decisions, and this process is tightly
regulated by feedback and feedforward loops that
embrace several different MAP3Ks, MAPK phos-
phatases (MKP), scaffolds, and other proteins that
can regulate MAPK activity. In this review we will
explore only a handful of these modes of regulation.
More future work has to be done, both experimental
and theoretical, to explore and fully understand the
signaling richness of the MAPK biology as illustrated
in Table 1.

Two central biological questions have stimu-
lated the current interest in understanding MAPK
information-processing dynamics. First, given the
multitude of cellular input signals that are routed
through only a few conserved MAPK pathways,
how can a cell convert different signals into differ-
ent outcomes? A current hypothesis is that signal
specificity can be achieved through complex spa-
tiotemporal regulation of MAPK signaling. In the
classical example, stimulation of PC12 cells with
the epidermal growth factor (EGF) or the nerve
growth factor (NGF) resulted in distinct physiolog-
ical outcomes, proliferation versus differentiation,
respectively. Initially, this divergent behavior was
attributed to different temporal patterns of ERK1/2
activity; transient activation by EGF led to prolif-
eration, whereas sustained activation by NGF led
to differentiation.23 Subsequent work suggested that
the duration of ERK signaling is interpreted by cells

through a network of immediate-early genes.24,25 Yet,
how different ERK dynamics can be robustly con-
trolled by upstream receptors still remains unclear,
although several plausible mechanisms have been
proposed.26,27 Recent discoveries show that a vari-
ety of distinct modes of the MAPK spatiotemporal
dynamics emerge from differential signal-induced
wiring of the cascade.28,29

A second key question is how MAPK cascades
can transform smooth, gradual signals, such as growth
factor concentration changes, into discrete (in a
sense, digital) outputs and critical cell fate decisions.
Initial answers came from theoretical studies that
demonstrated MAPK cascades can act as analog-
to-digital converters, generating bistable dynamics
(where two stable ‘on’ and ‘off’ steady states coexist),
abrupt, ultransensitive switches, and oscillations.30–41

Indeed, digital outputs can correspond to ‘yes-or-
no’ cell fate decisions; such behavior is critical for
controlling cell-cycle transitions.10,42,43

Mathematical and computational modeling
emerges as a novel and useful approach to comprehend
biology of MAPK signaling. In this review, we detail
how both theoretical and experimental work have
synergistically increased our understanding of MAPK
information-processing mechanisms. Although focus
is given to the mammalian ERK1/2 pathway, we also
highlight results for other MAPK systems, and show
that many theoretical results from one MAPK sys-
tem can apply to others. Although emphasis to theory
that has already been corroborated by experimental
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work is given, we do not exclude general theoret-
ical considerations. In fact, we illustrate that some
theoretical foresights preceded experimental valida-
tion. Thus, it is feasible that some theoretical predic-
tions discussed here may receive future experimental
support.

SPATIALLY COARSE-GRAINED
STUDIES OF MAPK SIGNALING

Basic Characteristics of Input/Output
Behavior in MAPK Cascades
The majority of experimental and theoretical MAPK
signaling studies have taken spatially coarse-grained
approaches where the cell is regarded as one or
more well-mixed compartment(s) with no variation
in spatial dimensions. Although this is a simplifi-
cation of the true picture, such approaches have
led to important breakthroughs in understanding
of MAPK information processing. Before going into
details, it is instructive to delineate different MAPK
output responses to typical input signals. These sig-
nals include (1) a simple step-function, or sustained
stimulation (Figure 1(a)), (2) an exponential decay
function (Figure 1(b)), which approximates the activ-
ity of a receptor after stimulation by a step input, and
(3) a rectangular pulse input, or pulse-chase stimu-
lation (Figure 1(c)), which although physiologically
relevant has received less attention so far. These
inputs capture the temporal behavior of different
upstream MAPK cascade activators, such as extra-
cellular ligands, RTKs, GPCRs, or small G-proteins.
Theoretical studies have shown that depending on the
cascade architecture and kinetic parameters, different
responses can arise from the same step input: a tran-
sient or adaptive response (Figure 1(d)),44 a sustained
response (Figure 1(e)),38 damped oscillations (Fig-
ure 1(f)),45 or sustained oscillations (Figure 1(g)).46

Numerous experimental studies have shown that
following the onset of sustained stimulation, in gen-
eral, MAPK responses reach peak levels in about
3–15 min. The behavior after peak activity can be
widely different. The duration of MAPK responses to
a constant stimulus can range from about 15 min
to several hours, depending on a cell type and
external cue. Transient versus sustained ERK1/2
responses can depend on (1) the rate of receptor
endocytosis,47,48 (2) the complex regulation of the
upstream cascade ‘gatekeepers’, small GTPases Ras
and Rap1,27,44,49 and (3) negative and positive feed-
back loops from ERK1/2 to SOS, GAB1, MEK, and
Raf.50–55

Steady-State Properties
Although time-varying characteristics of MAPK
signaling are critically important, so are steady-state
properties of MAPK cascades. In fact, steady-state
behavior presents the ultimate output of sustained
MAPK signaling, and the degree of adaptation
for transient signaling. Additionally, the stability
of steady states is important for driving complex
time-dependent behavior, such as bistability and
oscillations. We here briefly review the response
analysis,56 as it forms a convenient basis to understand
how the interaction topology of MAPK cascades
affects steady-state properties.

Steady-state information transfer through a
MAPK signaling cascade (Figure 2) can be quantified
using two types of response coefficients. The local
coefficient (r) is defined in terms of the response of a
kinase at a given level to a change in the activity of a
kinase at the immediately preceding level,

ri
i+1

≡ ∂ ln K∗
i /∂ ln K∗

i+1 (1)

where K∗
i is the steady-state concentration of activated

MAPiK. The global (overall) response coefficient,
determines the response of MAPK activation to the
input signal (S)

R ≡ d ln K∗
1/d ln S (2)

where S is the signal strength. The response coefficient
is essentially equal to the % change in the target
(MAPiK) to a 1% change in the input [MAP(i + 1) K
or S], and can be thought of as the sensitivity of
a target to a signal. Many of the design features
common to MAPK cascades serve to modulate this
sensitivity. There is a tradeoff, however, between the
sensitivity and the range where MAPK is sensitive to
input signals, or the working linear range. Decreasing
the sensitivity leads to a broadening of the working
linear range, whereas increasing the sensitivity shrinks
this range, making the response more switch-like.

One might expect that the sensitivity of an
MAPK cascade would be tuned for compatibility with
the eventual physiological outcome. Take for example
the S. Cerevisiae Hog1 and Fus3 cascades (Table 1).
For the Hog1 cascade, which controls osmotic stress
adaptation, one would expect low sensitivity with
a large linear range to ensure that the cell takes
appropriate action in response to a wide range of
osmotic pressure changes. On the other hand, for
the Fus3 cascade, which controls mating, one might
expect high sensitivity so that (i) low magnitude
signals, which may be confused with noise, do not
inadvertently cause the mating response, and (ii) there
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FIGURE 1 | Graphical illustration of different MAPK responses to typical stimuli. (a) A sustained, or step input, characterized by the magnitude of

the stimulus S. (b) An exponential decay input, characterized by the initial strength of the stimulus S0, and a half-life, τ1/2; S(t) = S0 exp
[

ln (0.5)·t
τ1/2

]
.

(c) A rectangular pulse, or pulse-chase input, characterized by the signal magnitude S, and the signal duration SD. (d) A transient or adaptive
response. The peak of the signal is described by the amplitude A and the peak time τp, signal duration TD is related to how long the response lasts,
the signaling time τ is the time-averaged concentration, and the integrated signal I is the area under the curve. Different mathematical forms have
been used to quantify these signaling characteristics; for example, Heinrich et al. proposed A = ∫ ∞

0 K∗(t)dt2 · TD, τ = ∫ ∞
0 t · K∗(t)dt/

∫ ∞
0 K∗(t)dt,

and TD =
√∫ ∞

0 t2 · K∗(t)dt/
∫ ∞

0 K∗(t)dt − τ 2, where K∗ is activated MAPK.37 (e) A sustained response. The parameters A, τp, and I have similar
meaning as for the transient response, whereas the steady-state is described by a magnitude, Ass, and a time to reach 99% of the steady-state value,
τss. (f) A damped oscillatory response. The steady-state and peak are characterized similarly as to the sustained response, while the duration of the
initial oscillatory period is described by P. Damped oscillations do not always show a constant period. (g) A sustained oscillatory response. After an
initial transient period, oscillations are steady with a constant amplitude A and period P.

are essentially only two steady-state cascade activation
states, high and low, that correspond to the ‘yes-or-no’
mating response.

Mechanisms Driving Input/Output Behavior
of MAPK Cascades

Linear Cascades without Feedback
The simplest representation of an MAPK cascade is
shown in Figure 2(a), where each level consists of a

single reaction. Exploiting this simplified topology
and assuming all reactions to operate far from
saturation (‘weakly activated pathways’), Heinrich
et al. showed that for an exponential decay input,
the mean signaling time and duration of transient
MAPK signaling depend only on phosphatases,
whereas signal amplitude is mainly determined
by kinases.57 Interestingly, these predictions were
experimentally validated 3 years later.58 It was also
predicted that signaling times and durations become
larger with more cascade levels, a trend that has
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FIGURE 2 | Schematic representations of MAPK
cascade signal propagation reactions. In all schemes, ATP
is assumed to be in excess and rapidly binding.
Throughout the literature, different, yet experimentally
relevant assumptions have been made regarding rate
constants, relative enzyme concentrations and saturability
in diverse cell systems, and this has resulted in a variety of
different rate laws being used to describe the reaction
kinetics. Readers interested in these details are referred to
the original papers where these different MAPK cascade
models are analyzed. (a) Simple linear cascade, where
double phosphorylations are lumped into a single reaction.
(b) Typical cascade where MAP2K and MAPK activation
consist of double phosphorylation steps. For the ERK1/2
cascade, MEK (MAP2K) activation is processive, whereas
ERK (MAPK) activation is distributive. (c) The ‘reactor
model’ of scaffold-mediated MAPK cascade activation.
Each kinase in the cascade is sequentially activated
without dissociating from the scaffold complex.

been observed in many studies of MAPK signaling
[e.g.,47,54].

Although Figure 2(a) shows a simplified MAPK
cascade, for a general MAPK cascade (without
feedback) that incorporates double phosphorylation
of MAP2K and MAPK (Figure 2(b)), Kholodenko
et al. showed that the global response of ppMAPK
to the signal is the product of all the local response
coefficients,56,60

R = r3
Sr2

3r1
2. (3)

If individual steps of the MAPK cascade have local
response coefficients greater than 1, having more levels
in the cascade will result in a higher sensitivity of
the output to the input signal. This is illustrated in
Figure 3 as a shift from curve a toward curve c on
the plot of the steady-state input/output properties of
an MAPK cascade. Such an increase in input/output
sensitivity was observed experimentally in Xenopus
oocyte extracts.38 The Hill coefficient equals 4.9
for a three-tired cascade (the ppMAPK response to
MAP3K∗), much greater than 1.7 measured for a two-
tired cascade (the ppMAP2K response to MAP3K∗),
showing that sensitivity amplification is a fundamental
property of MAPK cascades.60,61

Theoretical analysis has revealed that multiple
phosphorylation steps also lead to increased sen-
sitivity and switch-like input/output behavior38,39

mediating a shift in the steady-state diagram from
curve a toward curve c in Figure 3. Moreover, it has
recently been shown that a single cascade level with
double-site phosphorylation that occurs through a
nonprocessive, distributive mechanism can exhibit
bistability and hysteresis,39,62 which is illustrated in
Figure 3 as a further shift of the input/output map
from curve c to curve d. The necessary prerequisites
for bistability include (i) a competitive inhibition of
at least one of the two opposing enzymes by the
monophosphorylated intermediate, (ii) saturation of
that enzyme by its substrate, and (iii) in the first
cycle the catalytic constant ratio of phosphorylation
and dephosphorylation steps is less than that in
the second cycle. Recent theoretical investigations
based on comprehensive Monte Carlo sampling of
the Huang–Ferrell MAPK cascade model parameters
demonstrated that bistability is a robust system prop-
erty of such cascades, with 10% of all parameter sets
exhibiting bistability.63 This analysis has also shown
a 10% region of sustained oscillations,63 which were
predicted previously for an MAPK cascade with
high output/input sensitivity and negative feedback.46

Importantly, sequestration of a kinase by its substrate
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FIGURE 3 | Summary of the effects of various MAPK cascade features on the steady-state, input/output relationships. Curve a (black) is a classical
Michaelian response, which is the least sensitive, but responds to the largest range of input signals. Curves b (blue) and c (red) denote progressively
more sensitive input/output relationships, which can be approximated by a Hill equation [(ppMAPK) = (S)(Sn

50 + ppMAPK)n], where n is the Hill
coefficient and S50 is the half-maximal dose. Higher Hill coefficients give more sigmoidal responses, and therefore more sensitive responses. Curve d
(green) represents a bistable response that shows hysteresis. The solid green lines denote stable steady-states, whereas the dashed green line
denotes unstable steady-states. As the input magnitude is increased slowly from zero, the systems follow the lower branch of the curve d until the
dotted line is reached, at which point the system jumps to the high branch. If the input is then decreased slowly back to zero, the upper branch of
curve d is followed until the dotted line is reached, at which point the system jumps back to the low branch.

at the next cascade level is equivalent to negative
feedback, which can lead to sustained oscillations in
the presence of bistability in a cascade.64,65 In fact,
Shvartsman and coworkers showed that bistability at
a single level is a necessary condition for sustained
oscillations of an entire cascade with two or more
levels.63 Importantly, the potential for oscillations
in MAPK cascades was recently corroborated
experimentally. It was demonstrated that stimulation
of human mammary epithelial cells with low EGF
doses induces sustained oscillations of nuclear, active
ERK1/2 (H.S. Wiley, personal communication).

Although a physiological role for MAPK activity
oscillations is not known, one possibility is that these
oscillations may serve as a ‘persistence indicator’,
providing information for downstream targets that an
upstream activating signal still remains. This would
be similar to the physiological function of sustained
oscillations in p53 expression, which are thought
to indicate that DNA damage (the upstream signal)
persists.66 But why would an oscillatory signal, rather
than a simpler sustained signal, would be used as a
persistence indicator? We hypothesize that oscillations
would be used in cases where the appropriate cellular
response occurs only when the indicator is activated
in short pulses. As both p53 expression and MAPK
activity change the expression of a large number of
genes, short pulses versus sustained p53 expression or
MAPK activity would cause drastically different gene

expression responses, and therefore distinct cellular
outcomes.

Cascades with Feedback
Although MAPK cascades without feedback can
exhibit a wide variety of behaviors, including
bistability and oscillations, the role of feedback is to
modulate such behavior, making it either more robust
or eliminating it altogether. In the mammalian ERK1/2
pathway, ERK1/2 can phosphorylate and inactivate
upstream, positive regulators, such as SOS,50 Gab1,67

and the EGF receptor,9,68 creating negative feedback
loops. Positive feedback has also been observed in the
ERK1/2 cascade,51 JNK cascade,31,32 and Xenopus
oocyte MAPK (Mos/MEK1/p42 MAPK) cascade.69

The overall response coefficient (RF) for MAPK
cascade with feedback becomes,56

RF = R
1 − R × F

(4)

where F is the feedback strength given by F =
d ln v1/d ln[K∗], which quantifies the change in the rate
v1 of kinase activation at the first level brought about
by a 1% change in the active kinase concentration
at the terminal cascade level. For negative feedback
F < 0, and for positive feedback F > 0.

Negative Feedback
Equation 4 shows that as the negative feedback
strength is increased, overall sensitivity decreases.
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Thus, we move from curve c toward curve a in
Figure 3, increasing the working linear range of the
cascade. An important effect of negative feedback,
which is well known in engineering, is to make
the output more robust to disturbances within the
feedback loop. This is particularly clear at high
feedback strengths (−R · F � 1), where RF depends
mostly on the feedback strength (RF ≈ 1/F),70 and is
virtually insensitive to the properties of the individual
MAPK cascade levels within the feedback loop. To
illustrate how even at relatively low strengths, negative
feedback attenuates disturbances, we consider a
perturbation (ε to a single response coefficient,

r1
2 + ε. (5)

Substituting this into Eq. (2), we obtain

R = r3
Sr2

3(r1
2 + ε). (6)

One can see that without negative feedback, the
effect of the perturbation on the total response is
multiplied by the rest of the local response coefficients.
However, with negative feedback present, only if the
perturbation is large relative to the local response
coefficient will the global response be significantly
affected,

RF = r3
Sr2

3(r1
2 + ε)

1 − r3
Sr2

3(r1
2 + ε) · F

= R

[1/(1 + ε/r1
2)] − R · F

.

(7)

As negative feedback decreases input/output sensi-
tivity gives robustness to disturbances within the
feedback loop, and increases the operational linear
range, an MAPK cascade with negative feedback can
behave as a robust linear amplifier.70,71

Another function of negative feedback is to cre-
ate an adaptive, or transient response (Figure 1(c)) to
a step input (Figure 1(a)). In fact, a transient response
can be obtained when there is either negative feed-
back to upstream kinases or feedforward activation of
MAPK phosphatases.72 Since such feedfoward regula-
tion has not been described previously for MAPK
cascades, negative feedback is a critically impor-
tant design feature for controlling transient response
characteristics. Clearly, feedback must be strong to
induce transient signaling. However, strong feedback
requires highly active MAPK signaling, which can
lead to saturation of the negative feedback and a
sustained, rather than an adaptive response.47 Thus,
there is a fine balance for obtaining appreciable signal
amplitude and efficient adaptation. One solution is
to separate the MAPK activation time scale from

the feedback timescale with multiple intermediate
steps in the feedback loop.47 However, too many
intermediate steps and/or too strong of a feedback
can lead to a large time delay, which can cause
damped (Figure 1(e)) or sustained oscillations.40,73,74

Indeed, ppERK1/2 oscillations in response to a step
input of fibroblast growth factor have been observed
experimentally.75 Motivated by previous theoretical
predictions that negative feedback can underlie oscil-
latory behavior,46 Nakayama and coworkers experi-
mentally confirmed that the negative feedback from
ppERK1/2 to SOS, an ERK1/2 cascade activator
upstream of the MAP3K Raf, was essential for these
oscillations. Although more data are needed to dis-
tinguish completely whether the ERK-SOS negative
feedback induces damped or sustained oscillations,
this illustrates how theoretical and experimental work
can synergize to advance our understanding of MAPK
cascade behavior.

We conclude that negative feedback can have
disparate effects on MAPK signaling, making the
steady-state, input/output relationships more linear,
but also serving as a potential source of instability
for the dynamic responses. Since the linearity of
the stationary, input/output characteristics mainly
depends on the feedback strength, whereas the
bifurcation point of the onset of oscillations depends
on both the feedback strength and the feedback delay
period,46 in principle these distinct roles of negative
feedback for MAPK signal processing can be regulated
separately.

Positive Feedback
When feedback is positive (F > 0), Eq. (4) shows that
signals are amplified rather than attenuated. As the
strength of the positive feedback is increased, the
input/output response shifts from curve a toward
curve c in Figure 3, making MAPK responses
more sensitive and switch-like, but decreasing the
operational linear range of the cascade. Importantly,
positive feedback can shift the steady-state response
all the way to curve d, endowing a cascade with
bistability.34,76–78 Curve d is obtained when the
denominator in Eq. (4) equals zero (F · R = 1), which
corresponds to a saddle-node bifurcation where two
steady states, one unstable and one stable, are created
or destroyed.46 However, the term F ·R cannot be
more than 1 and, therefore RF cannot be negative
at any stable steady state.46 Additionally, positive
feedback combined with slow negative feedback can
trigger relaxation oscillations (Figure 1(g)), where the
system oscillates between the high and low branches
of the hysteresis curve.40,42,43,46,65,79

As noted above, bistability can arise from
distributive double phosphorylation,39 and this is
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a robust property of MAPK cascades.63 Here, we
see that positive feedback loops can also lead to
bistability. Why would evolution incorporate positive
feedback into an MAPK cascade, if bistability can
already be achieved with only the cascade itself? The
answer to this question relates to the robustness
of the bistable behavior; although bistability can
exist without positive feedback, random parameter
perturbation and/or reaction rate fluctuations due
to small numbers of molecules erode the bistable
behavior, causing the system to become monostable
and/or switch between the bistable states.1,52,80–84

Such considerations are particularly important in
extremely small cellular compartments such as neuron
dendrites, where it is proposed that MAPK bistability
plays a central role in long-term potentiation and
memory. Without positive feedback to make the
bistability robust, reaction rate fluctuations destroy
the maintenance of the high ppMAPK steady-state,
and thus could not serve the proposed physiological
function.80,81,84

Scaffolding
Scaffolds are nearly ubiquitous in MAPK cascades
(Table 1). They ensure signaling specificity by bringing
the proper cascade components together in high local
concentrations, facilitating signal transmission while
preventing pathway crosstalk.5,85,86 Levchenko et al.
showed that a main effect of scaffolding is to decrease
sensitivity,87 shifting the input/output diagram from
curve d toward curve a in Figure 3. This is a direct
result of the scaffold changing the multi-stage, multi-
step phosphorylation mechanism shown in Figure 2(b)
into a processive mechanism shown in Figure 2(c).

Scaffolds have an optimal concentration for
signal propagation,88 which depends on the con-
centration of the MAPK cascade components,
and to some extent, on their affinities for the
scaffold.57,87,89,90 Low scaffold concentration leads
to formation of just a few functional scaffold com-
plexes; alternatively, high scaffold concentration leads
to formation of non-functional complexes and seques-
tration of MAPK cascade components. Thus, there is

an intermediate concentration of scaffold protein that
provides a maximum signaling benefit. The presence
of an optimal scaffold concentration helps explain
experimental results showing that when scaffolds are
overexpressed, signaling is decreased,91 but when
scaffolds and the MAPK cascade proteins are over-
expressed together, signaling is increased.92 It was
shown that the number of functional scaffold com-
plexes decreases as 1/[Scaffold](m–1), where m is the
scaffold occupancy, as the scaffold concentration is
increased past the optimum.87 Thus, the optimum
concentration peak should be sharper for a scaffold
that binds all three members of the MAPK cascade
(e.g., KSR), compared with one that binds only two
cascade members (e.g., MP-1). Numerical simulations
of Heinrich et al. also demonstrate this behavior.57

One situation a cell may use a two- instead of a three-
member scaffold is when variations in scaffold and
MAPK cascade component abundances are large; the
two-member scaffold would be more robust to such
variation.

The above studies only consider intra-scaffold
signaling; however, it was shown that inter-scaffold
interactions can also occur,93,94 which prompted
reconsideration of what a ‘functional’ scaffold com-
plex is. A recent theoretical investigation consid-
ered an inter-scaffold signaling model, arguing that
the traditional ‘reactor model’ (Figure 2(c)) imposes
restrictive energetic and steric constraints.95 A similar
‘membrane recruitment’ model is proposed as a pre-
ferred mechanism where partially occupied scaffolds
are concentrated in the same cellular compartment,
such as the plasma membrane (PM) (Figure 4).5,85,86

Although there are a plethora of potential signaling
mechanisms that can occur within this membrane
recruitment, inter-scaffold signaling model, the fun-
damental tenet is scaffold-driven co-localization of
cascade components.

SPATIOTEMPORAL MAPK SIGNALING

MAPK cascades relay extracellular stimuli from
the PM to pivotal cellular targets distant from

3K
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and MAPK activation

2K 2K
 2K

K

K

P

P
P

P
P

P

P

FIGURE 4 | The inter-scaffold signaling scenario.
Signals cause activation of a membrane component
which recruits the MAPK cascade scaffold. The
scaffold can be empty, or contain any combination of
MAPK cascade components, active or inactive. The
role of the scaffold is to concentrate the MAPK
cascade components into a small volume, where they
can effectively interact and propagate the signal.
Green color denotes signaling activity, while red color
denotes inactivity.
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the membrane in both the cytoplasm and the
nucleus, for example, transcription factors. A critical
feature of MAPK information processing is spatial
inhomogeneity of output signaling, which cannot be
captured by the coarse-grained approaches discussed
above. Here we show how basic properties of
spatial separation of MAPK components, diffusive
movement, and endocytosis underlie processing and
transmission of signals carried out by phosphorylated
kinases.

Spatial Gradients of MAPK Signaling
Often, activating signals are present only on the PM
where activated receptors and small G-proteins, such
as Ras, reside, whereas inactivating signals (carried
out by phosphatases) are distributed throughout the
cytoplasm. In such scenarios, precipitous gradients
of phosphorylated kinases can develop, impeding
information transfer to distant cellular locations,
such as the nucleus. In a model where MAP2K
activation is localized to the PM, and ppMAP2K
dephosphorylation occurs throughout a cell with
linear kinetics, the steady-state ppMAP2K gradient
is almost exponential and its depth is controlled solely
by the ratio of the phosphatase rate constant to the
diffusion coefficient.96 When phosphatase activity is
high compared with the diffusion coefficient, gradients
are steep, and ppMAPK signals cannot propagate far
from the PM. As kinases at subsequent levels of the
cascade are not attached to the membrane, but are
freely diffusing, the gradient becomes shallower down
the cascade.65 When a cytoplasmic cascade level is
bistable, the distance the ppMAPK signal can travel
is significantly increased.97 On the basis of typical
diffusion coefficients for proteins and phosphatase
rate constants, MAPK activation gradients were
predicted to be significant for distances ∼2–5 µm
and greater.96 Subsequently, such gradients of protein
active forms were reported for the small GTPase
Ran,98 phosphorylated stathmin oncoprotein 18,99

and importantly the yeast MAPK Fus3.100

If spatial gradients of protein active forms are
large, how can signals reach distant cellular locations?
One possibility is endocytosis, which can bring signals
from the PM into the cell interior.101 Consider a
spherically symmetric cell where a fraction φ of the
total kinase activity vkin is located on the PM, the
remaining fraction of the kinase activity (1–φ) is
located on the endosomes, and the phosphatases are
uniformly distributed in the cytoplasm (Figure 5(a)).
The resulting signaling dynamics can be described
by the so-called reaction–diffusion equations. If
the phosphatases are far from saturation, then

in the cytoplasm the phosphorylated signal Cp
(e.g., MAP3K∗ or ppMAP2K) satisfies the following
reaction–diffusion equation,96

∂Cp

∂t
= D

r2

[
∂

∂r

(
r2 ∂Cp

∂r

)]
− kpCp. (8)

Here, D is the diffusion coefficient and kp is
the phosphatase rate constant. The cytoplasm is
partitioned into two regions (see Figure 5(a)): between
the PM and the PM side of the endosomes
(RPM>r>RPM

endos, Region I) and between the nuclear
membrane (NM) and the NM side of the endosomes
(RNM

endos>r> Rnuc, Region II). It is assumed that the
endosomes, which move slowly compared with the
characteristic time of (de)phosphorylation reactions,
reside within a fixed, thin layer (RPM

endos>r>RNM
endos) of

the cytoplasm (Figure 5(a)). Although for illustrative
purposes we here consider only a single endosome
compartment, there can be multiple endosome
compartments at different radial positions (e.g.,
early, recycling, and late endosomes). The steady-
state solution to Eq. (8) (∂Cp/∂t = 0) specifies the
characteristic length of the local gradients (Lgradient) in
terms of the ratio α = √

kp/D of the phosphatase
rate constant and diffusivity, Lgradient = 1/α.96,102

However, the resulting spatial profile and absolute
magnitudes of these gradients depend on the kinases
and are specified by the boundary conditions. With
a single endosome compartment, there are four
boundary conditions: (1) at RPM, the diffusion flux
equals the kinase rate at the PM, (2) at Rnuc there is
no diffusion flux, (3) at RPM

endos, and (4) at RPM
endos the

flux balances include the kinase rate on endosomes,
diffusion flux in the cytoplasm, and the flux from
the Cp concentration difference at both sites of the
endosome compartment.65

Calculated steady-state gradients of Cp with and
without endocytosis are compared for a typical mam-
malian cell in Figure 5(b), and for a large cell, such as a
Xenopus oocyte in Figure 5(c). In both cases, increas-
ing α (decreasing diffusivity or increasing phosphatase
activity) leads to deeper gradients, and for the large cell
values of α must be small for signals to propagate to
the nucleus. Large values of α can lead to highly local-
ized signaling (Figure 5(c); α = 0.05 µm−1), implying
to obtain tight spatial control of MAPK signaling, cells
may have evolved means of either decreasing the effec-
tive diffusion coefficient (e.g., localized, non-diffusible
binding sites), and/or increasing soluble phosphatase
activity. Interestingly, high phosphatase activity alone
is sufficient for creating localized MAPK activity when
activating kinases are localized. As expected, Fig-
ure 5(b, c) show that endocytosis increases the signal
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FIGURE 5 | Effect of endocytosis on spatial signal propagation. (a) Schematic of spherically symmetric, endocytosis-enhanced signal propagation.
Signals are generated at the PM and in a small region of space where the endosomes reside, and are terminated by phosphatases everywhere else.
Signals can diffuse throughout the region between the plasma and NMs. (b, c) Steady-state spatial profiles of Cp as a function of the distance from
the plasma membrane d = RPM − r. Dash-dot lines correspond to cases where half the kinase activity localized at the endosomes (φ = 0.5), while
solid lines denote cases where all kinase activity is located at the PM. Panel (b) corresponds to a cell with dimensions RPM = 9 µm, Rnuc = 3.5 µm,
RPM

endos = 6.5 µm, = 6.2 µm. The endosome width, 0.3 µm = RPM
endos − Rendos

PM , was taken to be three times a typical endosome diameter
(∼100 nm), since endosomes are not well packed. Panel (c) corresponds to a large cell, such as a Xenopus oocyte, with dimensions
RPM = 1000 µm, Rnuc = 390 µm, = 650 µm, and = 649 µm. (d, e) Endocytosis-enhanced signal amplification at the NM as a function of α and
φ. Signal amplification is defined as A = Cp(Rnuc, φ)Cp(Rnuc, φ = 1). Cell dimensions used for panels (d) and (e) are the same as for panels
(b) and (c), respectively.
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magnitude at the NM; furthermore, Figure 5(d, e)
demonstrate that regardless of the values of φ and α,
the NM signal amplification is always greater than
one, implying that endocytosis should always increase
the signal magnitude at the nucleus. As the fraction of
kinase activity at the endosomes (1–φ) or α increase,
signal amplification at the NM becomes greater. We
conclude that when phosphatase activity is high or
diffusivity is low (α*RPM∼10), endocytosis may play
a critical role in signal propagation from the PM to
the NM.101,103,104

MAPK Signaling over Long Distances
Spatial gradients pose a particular problem when
signals must travel over distances greater than
10–100 µm, for which diffusion is insufficient. For
the transport of ppMAPK signals from the PM to the
nucleus in large cells like Xenopus oocytes (∼1 mm
in diameter), it has been proposed that endocytosis
can bring the signal source closer to the destination,
reducing the spatial gradient and increasing infor-
mation transfer.101 Simulation results suggest that if
phosphatase activity is low (α < 0.01 µm−1), endo-
cytosis combined with simple diffusion is a plausible
mechanism for signal propagation to the nucleus in
such cells (Figure 5(c)). However, typical diffusion
coefficients (∼ 10µm2/s) and phosphatase activities
(∼1 s−1) give α∼0.1, so unless phosphatase activity
is regulated to be extremely low during the initial
time period of 10–20 min following stimulation, it is
unlikely that endocytosis plays a significant role for
signal propagation in Xenopus oocytes. Alternatively,
cytoplasmic scaffolds and molecular-motor driven
transport of signaling complexes may play a role
in spatial signal propagation by protecting ppMAPK
from cytoplasmic dephosphorylation.101,105,106 For
the centimeter- and even meter-scale transport of sig-
nals, such as from neuron terminals to the nucleus
via the axon, especially in a large animal’s extremity
(e.g., from a giraffe’s lower leg to its brain), present
an even more challenging problem.107 Although the
retrograde transport of endosomes is an important sig-
naling vehicle, in the NGF-TrkA system, signals can
propagate through mechanisms other than endosomal
transport.108,109 Additionally, the average velocity of
molecular motors (1–10 µm/s110) is not fast enough to
account for experimentally observed signal propaga-
tion time,111 posing the question of what mechanisms
may be able to transport signals faster than retrograde
transport, and over distances of meters. It has been
proposed that traveling waves of protein activation
can perform this task.97 Such waves can occur when
a downstream kinase positively feeds back to a cyto-
plasmic upstream kinase, and the stimulus duration

exceeds a certain threshold. Simulation results suggest
that these traveling waves transport signals at tens
of µm/s, and as the strength of positive feedback is
increased, the velocity increases (up to hundreds of
µm/s). These traveling waves are much faster than ret-
rograde transport, fast enough potentially to explain
the experimentally observed speed of signal propaga-
tion in the NGF-TrkA system.

FUTURE DIRECTIONS

Although substantial progress has been made in
understanding MAPK information processing, com-
paring the biological complexity listed in Table 1 and
the diversity of responses shown in Figure 1 to the
current level of understanding shows that there is
much left to explore. Much work has been done
to elucidate how MAPK cascade topology affects
steady-state input/output behavior; however, equally
important and less studied is how cascade topology
affects the transient characteristics of MAPK acti-
vation responses, such as peak time, duration, and
integral. Future work will give more focus to discov-
ering how network topology controls these transient
response characteristics. How inter-scaffold signaling
affects MAPK activation is just beginning to be inves-
tigated. The intricacies of how MAPK phosphatases
(MKP) can affect MAPK signaling have received lit-
tle theoretical attention, although several complex
mechanisms have been described, such as nuclear
sequestration of MAPK by MKP,112 stabilization of
MKP by MAPK,44 and cooperative activation of MKP
activity by MAPK phosphorylation.113 How MAPK
cascades mechanistically control cellular outcomes
remains an open question. It is thought that down-
stream targets of MAPK, such as transcription factors
(e.g., c-Fos) and feedback regulators of the MAPK
cascade [e.g., MKP and Receptor-Associated Late
Transducer (RALT)], play a role in determining cell
fate.25,114,115 Future work will extend MAPK cascade
models to include downstream MAPK targets and
gene expression responses, moving closer to gaining
mechanistic understanding of how MAPK cascades
control physiological outputs. Application of infor-
mation theoretic approaches may yield further insight
into MAPK signaling. Such approaches are based
on the Shannon entropy, which, analogous to the
thermodynamic meaning of entropy, characterizes the
‘disorder’ of a probability distribution; high entropy
means low information, and vice versa. Information
theory has been used in the signal processing and
communication fields for decades, and has recently
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been applied to NF-κB signaling (A. Hoffmann, per-
sonal communication). Future work will elucidate
the roles of various MAPK cascade architectural and
kinetic properties in terms of information processing
ability, comparing and contrasting these new features
to more traditionally known function as described
in this review. Spatial modeling of MAPK cascades
is in its relative infancy, being mainly limited to
analysis of single cascade levels and steady-state gra-
dients. It is only recently that theoretical work has

been extended to describe signal processing by mul-
tiple cascade layers and feedforward and feedback
loops.33,65,72,116,117 Future work will incorporate spa-
tial descriptions of entire MAPK cascades, including
scaffolds, and both their steady-state and transient
behavior will be analyzed. As the spatial resolution
of experimental imaging techniques improve, these
future spatial analyses will shed new insights into
how MAPK cascades can control such a variety of
physiological responses.
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