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A B S T R A C T

Although endocytosis has traditionally been understood as a signal attenuation mecha-

nism, an emerging view considers endocytosis as an integral part of signal propagation

and processing. On the short time scale, trafficking of endocytic vesicles contributes to sig-

nal propagation from the surface to distant targets, with bi-directional communication be-

tween signalling and trafficking. Mathematical modelling helps combine the mechanistic,

molecular knowledge with rigorous analysis of the complex output dynamics of endocyto-

sis in time and space. Simulations reveal novel roles for endocytosis, including the control

of cell polarity, enhancing the spatial signal propagation, and controlling the signal magni-

tudes, kinetics, and synchronization with stimulus dynamics.

ª 2009 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction vesicular bodies, and lysosomes (Hicke and Dunn, 2003;
Endocytosis is a main process by which cells transport extra-

cellular and plasma membrane bound entities into the cell

interior. Although there are many intricate endocytic mecha-

nisms (Bareford and Swaan, 2007; Benmerah and Lamaze,

2007; Jones, 2007; Rizzoli and Jahn, 2007), the formation of

endocytic vesicles can be illustrated in terms of two simple

component processes (Figure 1). First, a part of the plasma

membrane invaginates, and, second, it pinches off. The inter-

nalized endocytic vesicle, now within the cell and separate

from the cell membrane, has in its lumen what was previously

extracellular material, and has on its cytosolic surface what

was previously cell membrane bound and cytosolic. After

internalization, cellular trafficking machinery transports the

vesicle and its cargo to the appropriate cellular locations

through a network of specialized organelles, including early

endosomes, recycling endosomes, late endosomes, multi-
and, University College D
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Sorkin and Goh, 2009; Williams and Urbe, 2007).

While the central importance of endocytosis in cell biology

cannot be understated, of particular interest in this review is

the role of endocytosis in signal transduction. Traditionally, en-

docytosis was regarded as a simple signal attenuation mecha-

nism, as it removes signals from the extracellular space and

receptors from the cell surface. These processes not only termi-

nate signalling, but also desensitize the cell and prepare it for

subsequent signals. Numerous recent studies, however, have

brought about a more complex view: endocytosis and traffick-

ing play a central role in signal propagation and specificity by

regulating both the dynamics and localization of signalling (Di

Fiore and De Camilli, 2001; Kholodenko, 2002; Polo and Di Fiore,

2006; Sorkin and Von Zastrow, 2002; von Zastrow and Sorkin,

2007; Disanza et al., 2009). For example, the small G-protein

Ras, whose constitutive activation drives a number of human

malignancies, can be activated by receptor tyrosine kinases
ublin, Belfield, Dublin 4, Ireland.

mical Societies. Published by Elsevier B.V. All rights reserved.

mailto:boris.kholodenko@ucd.ie


Figure 1 – A general, simlified scheme of endocytic and trafficking processes. A small area of the plasma membrane invaginates (stage 1),

and then it is pinched off into a vesicle (stage 2). The vesicle lumen contains previously extracellular material (including ligands L (shown

by red) bound to the receptor (R) extracellular domains), while the vesicle surface that faces the cytoplasm contains the material, previously

exposed into cytosol (including the cytoplasmic receptor tails (shown by yellow) with bound adaptor or target proteins (shown by green)).

The internalized vesicle fuses with larger, early endosomes. The internalized material is then trafficked to tubulovesicular sorting

endosomes. From here, material can either be taken to recycling endosomes and thus back to the cell surface, or be re-internalized,

creating a multi-vesicular body destined for lysosomal degradation.

M O L E C U L A R O N C O L O G Y 3 ( 2 0 0 9 ) 3 0 8 – 3 2 0 309
not only at the cell membrane, but also on the membranes of

various endosomal structures (Haugh et al., 1999a; Jiang and

Sorkin, 2002; Li et al., 2005). In some cases, such as vascular en-

dothelial growth factor (VEGF)-induced extracellular regulated

kinase (ERK) activation, full signal propagation depends upon

endocytosis (Lampugnani et al., 2006). In fact, for some signals

that emanate at the cell surface, endocytosis may be the only

way to reach distant cellular locations, such as the nucleus. In-

deed, signal deactivation during diffusion in the cytoplasm can

cause precipitous signalling gradients and very low signal mag-

nitudes near the target (Brown and Kholodenko, 1999; Kholo-

denko, 2003). Such gradients of protein active forms have

been observed for the small GTPase Ran (Kalab et al., 2002),

phosphorylated stathmin oncoprotein 18 (Niethammer et al.,

2004), and the yeast MAPK Fus3 (Maeder et al., 2007). Endosomal

trafficking is even more crucial for signal propagation over dis-

tances greater than w10–100 mm, when diffusion is unsatisfac-

torily slow. Such situations arise in signal propagation from the

plasma membrane to the nucleus in large cells, e.g., Xenopus oo-

cytes (w1 mm), or in transport of nerve growth factor (NGF)
survival signals from distal axon terminals to the soma (1 cm–

1 m). For the long distance transport, molecular motor driven

traffickingof endosomes or protein complexes not only acceler-

ates signal propagation relative to diffusion, but association of

signals with specific proteins can also help protect signals from

deactivation (Howe and Mobley, 2004; Perlson et al., 2005, 2006).

In terms of localization, some MAPK cascade scaffolds are pref-

erentially localized to either plasma or endosomal membranes,

which could lead to different signalling outcomes depending on

where the signal originates (Hancock, 2003; Kolch, 2005). Fur-

thermore, the access to membrane bound substrates that are

critical for signalling, such as phosphoinositols, can be regu-

lated via endocytosis and trafficking (Haugh, 2002; Haugh

et al., 1999b).

Not only does endocytosis control signalling, but signalling

also regulates endocytosis, acting in a bi-directional manner

(von Zastrow and Sorkin, 2007; Pyrzynska et al., 2009). The

classical epidermal growth factor (EGF) receptor signalling

system, for example, regulates endocytosis in several ways.

First, EGF binding to its receptor (EGFR) causes a rapid increase
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in the rate of EGFR internalization (Lund et al., 1990). This in-

crease is mediated by EGFR phosphorylation, recruitment of

adaptor proteins such as Grb2, and activation of Cbl that ubiq-

uitylates EGFR and possibly other endocytosis-related pro-

teins (Huang et al., 2006). These events are followed by the

recruitment of clathrin-coated pit proteins, e.g., epsin and

AP-2, thus causing the increased endocytosis rate (Sorkin

and Goh, 2009). Second, EGFR can regulate localization of the

Rab family GTPases, which are crucial for directing traffic

along the endocytic pathway and defining the identity of spe-

cific endosomal compartments (Rink et al., 2005). As the mo-

lecular machinery that underlies endocytosis has become

further elucidated, more bi-directional links have been uncov-

ered, which has led to an emerging view that signalling and

endocytic systems are not distinct, but rather are interacting,

co-evolving systems (Polo and Di Fiore, 2006; von Zastrow and

Sorkin, 2007).

Over the past decade, signal transduction research has

been infused and enhanced with systems biology methodolo-

gies, endocytosis-related signal transduction being no excep-

tion (Kholodenko, 2006; Shankaran et al., 2007a; Wiley et al.,

2003). The distinct feature of systems biology approaches

when compared to traditional research is the development

and use of mathematical and computational models applied

to the biological system of interest (Kholodenko et al., 1999).

A main advantage of using a mathematical model is that it

allows one to analyze the system in ways not experimentally

possible, whereas predictive, in silico simulations of the sys-

tem output behaviour are experimentally testable. Moreover,

these predictions are consistent with all the data and mecha-

nistic information incorporated in the model, and this insight

likely would not have been conceived merely from the data.

Another advantage of using a mathematical model is that it

can handle and interpret the bewildering complexity of signal

transduction.

Although mathematical and computational modelling can

be conceptually new to biologists and may raise doubts, math-

ematical models generally serve the same purposes as biolog-

ical models, such as knockout mice or cell lines. For example,

to understand a disease process occurring in the human body,

most research is done in cell lines and animal models, rather

than in the true system of interest. Although these ‘‘models’’

are not identical to the human body, they retain key features

of the system of interest. To use such models successfully, one

must first understand how the model is different from the real

system (and therefore what research questions can and can-

not be addressed) and then whether the new knowledge

gained by using the model applies to the real system. When

put in this context, a mathematical model is just another layer

of abstraction from the system of interest; it allows one to

address questions that are impossible or very difficult to

answer using traditional biological models.

This review focuses on how mathematical modelling and

systems biology help us understand endocytosis itself and

its role in signal transduction. In the context of signal trans-

duction, we will address here receptor-mediated endocytosis,

a process where the binding of extracellular ligands to trans-

membrane receptors facilitates their internalization. Recep-

tor-mediated endocytosis and its modelling have been

focused on five classical model systems: EGF, Vitellogenin
(Vtg), transferrin (Tf), low density lipoprotein (LDL), and insu-

lin/glucose transporter (Glut). From a biological perspective,

the EGF system is most relevant to cancer-related signal trans-

duction. From a mathematical perspective, however, all five

classical endocytic systems can be described by similar equa-

tions. Consequently, insight drawn from, for example, a Tf

model may be applicable to the EGF system. Different models

for multiple receptor-mediated endocytosis systems that have

been developed over the past three decades are presented and

grouped here according to the mathematical features of the

model, rather than the biological system. Consequently, the

mathematical commonalities between the systems become

apparent. As many mathematical modelling concepts can be

unfamiliar to the general reader, we also include short

sections on mathematical modelling fundamentals. Overall,

although modelling has contributed to the understanding of

endocytosis, much work remains to incorporate the ever

increasing knowledge on molecular mechanisms into models.
2. Mathematical modelling fundamentals

The overall modelling process can be subdivided into three

repeated tasks:

1. Model Development: Converting Biological Knowledge into

Equations

2. Parameter Estimation: Determining Values of Unknown

Model Parameters

3. Model Validation: Comparing Model Predictions to Inde-

pendent Experimental Data

The process is iterative, in that Step 3 inevitably leads to

new biological knowledge that the model cannot describe,

bringing the modeller back to Step 1. Below we describe these

tasks and illustrate them with a simple endocytosis modelling

example.

2.1. Model development: converting biological
knowledge into equations

The majority of endocytosis and signal transduction models

are based on systems of ordinary differential equations

(ODEs) and/or partial differential equations (PDEs). ODE

models naturally arise from the description of processes

where quantities of interest are changing with respect to

time in a quantifiable manner. PDE models arise from extend-

ing the temporal description of dynamic processes into space.

Here, we illustrate the process of converting biological knowl-

edge into a system of ODEs with a simple example, while the

basics of PDE models are described in a subsequent section.

This example illustrates that when ligand is in excess of re-

ceptors, such as the case for LDL, ligand-induced endocytosis

and recycling can be analogous to traditional enzyme kinetics

(Harwood and Pellarin, 1997).

Biological processes involved in ligand-induced endocyto-

sis can schematically be presented as the following simplified

kinetic diagram (chemical reaction Eq. 1). In the first reaction,

extracellular ligand L binds (with rate constant k1) and disso-

ciates (with rate constant k2) from surface receptor R. The
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second reaction (Eq. 1) simplifies the complex process of inter-

nalization of the surface ligand–receptor complex LR as a single

step with the rate constant k3. The internalized ligand–receptor

complex LRi breaks apart in the third reaction (rate constant k4),

with the internalized ligand Li remaining inside the cell and the

receptor recycling to the surface,

Lþ R %
k1

k2

LR /
k3

LRi /
k4

Liþ R (1)

Although Eq. 1 resembles the kinetic diagram of an enzyme re-

action where the substrate (L) is converted to the product (Li)

by the enzyme (R), special conditions must be fulfilled in order

to extend this similarity to the observed kinetic behaviours.

The reaction rates of the processes, vi, which describe how

quickly the process is occurring, can be written according to

the law of mass action as follows,

n1 ¼ k1½L�½R�; n2 ¼ k2½LR�; n3 ¼ k3½LR�; n4 ¼ k4½LRi�; (2)

Here square brackets denote species concentrations with

respect to the total system volume.

The rate of change of a species concentration is the sum of

all reaction rates that produce that species, minus all reaction

rates that consume that species. For each species in Eq. 1, this

verbal definition is stated mathematically in terms of ODEs as

follows,

d½R�
dt
¼ �v1 þ v2 þ v4;

d½LR�
dt
¼ v1 � v2 � v3;

d½LRi�
dt

¼ v3 � v4;
d½Li�
dt
¼ v4;

(3)

where t denotes time. Eq. (3) is a system of ODEs that mathe-

matically describes the four biological processes listed above.

The dynamics for L are not considered, since as stated above,

for this example we are only concerned with situations where

ligand is in excess. If the dynamics of L were considered, how-

ever, the system of ODEs would be non-linear (as is standard

in signal transduction), because then in the rate v1 two species

concentrations would be multiplied by each other. All other

rates are first-order, linear processes.

For many endocytic systems, the rate of internalized ligand

accumulation, d[Li]/dt, or v4, is of particular interest. Since this

rate only depends explicitly on [LRi], we now focus on deriving

an expression for [LRi] in terms of experimentally accessible

quantities.

Experimental observations suggest that in some situations,

particularly when extracellular ligand is abundant, the rate-

limiting step of the endocytic process is internalization

(step 3) (Harwood and Pellarin, 1997). In such a scenario, the

ligand binding/dissociation processes will quickly replace any

ligand–receptor complexes lost from the plasma membrane

via internalization. This creates a ‘‘pseudo-steady-state’’ situ-

ation for [LR], where the number of ligand–receptor complexes

on the cell surface is essentially constant over long time scales,

where the long time scale is defined as the time scale of

internalization. Mathematically, this is written as

d½LR�
dt

z00n1 ¼ n2 þ n3 (4)

Along similar lines, the rate of receptor recycling, as it is down-

stream from the rate-limiting step, can go only as fast as the

endocytosis rate. Therefore, over long times scales, the rate
of receptor recycling will be equal to the rate of endocytosis,

giving a pseudo steady-state for [LRi] as well,

v3zv40
d½LRi�

dt
z0 (5)

Based on Eqs. (4) and (5), we can derive an expression for [LRi]

and therefore d[Li]/dt. First, by substituting the rate expres-

sions from Eq. (2) into Eq. (4) and rearranging, we obtain

½LR� ¼
�

k1

k2 þ k3

�
½L�½R� (6)

Using a similar approach, we obtain from Eq. (5)

½LRi� ¼
�

k3k1

ðk2 þ k3Þk4

�
½L�½R� (7)

Assuming either that receptor degradation and synthesis are

slow relative to the time scale of internalization, or that recep-

tor synthesis balances any degradation, then the total receptor

concentration remains constant. Then, the sum of all receptor-

containing species concentrations is equal to the total receptor

concentration,

½R�TOT¼ ½R� þ ½LR� þ ½LRi� (8)

Substituting Eqs. (6) and (7) into Eq. (8) and rearranging leads to

½R� ¼ ½R�TOT

1þ
�

k3k1

ðk2 þ k3Þk4
þ k1

ðk2 þ k3Þ

�
½L�

(9)

We finally arrive at an expression for d[Li]/dt using Eqs. (7) and (9)

d½Li�
dt
¼ n4 ¼

k3

�
k4

k3 þ k4

�
½R�TOT½L��

k2 þ k3

k1

��
k4

k3 þ k4

�
þ ½L�

¼ V
0
max½L�

K0m þ ½L�
(10)

where Vmax
’ and Km

’ , defined implicitly in Eq. (10), have

analogous functional meaning as their enzyme kinetics

counterparts. Eq. (10) thus predictably behaves as depicted in

Figure 2, with Km
’ determining the ligand concentration at which

the internalization rate is half-maximal, and Vmax
’ determining

the maximal internalization rate. Simulating the precise

behaviour of Eq. (10), however, requires values for Vmax
’ and

Km
’ . These values are obtained via parameter estimation as

described in the next section.

It is important to note that Eq. (10) is only valid given all of

the assumptions made to derive this model, which may or

may not apply. For instance, in many cases [L] is not much

greater than [R]TOT, and for some systems ligand binding

may be rate-limiting (Hendriks et al., 2006, 2003). It is a useful

exercise to re-derive the internalization rate under such

different conditions, which is left to the reader.

2.2. Parameter estimation: determining values of
unknown model parameters

Traditionally, to estimate Vmax
’ and Km

’ , standard enzyme kinet-

ics practice, such as the use of the Lineweaver-Burk plot, would

be applied. However, these methods rely on linearization of

Eq. (10) by the substitution of the variables, which distorts

experimental errors and can significantly bias parameter esti-

mates. Therefore, a preferred method for estimating unknown



Figure 2 – Relationship between the rate of internalized ligand

accumulation and extracellular ligand concentration. The rate of

internalized ligand accumulation, v4, is plotted against the

concentration of extracellular ligand [L]. Importantly, this

behaviuor is predicated upon Eq. (10) and all the assumptions used

to derive it, and may not be applicable to other situations.

M O L E C U L A R O N C O L O G Y 3 ( 2 0 0 9 ) 3 0 8 – 3 2 0312
parameters in such models is non-linear regression. Such

a procedure works by changing parameter values to minimize

the differences between Eq. (10) and experimental data. This

procedure is sometimes referred to as ‘‘training’’ or ‘‘fitting’’.

Given data for how [Li] changes over time at various values of

[L], one readily can estimate Vmax
’ and Km

’ using non-linear re-

gression. It can thus be said that Vmax
’ and Km

’ are identifiable

from such a dataset. In the specific case of LDL in Hep-G2 cells,

it was found that V
0

max ¼ 15:8 ng LDL=mg cellular protein/min

and K
0

m ¼ 48 mg=mL (Harwood and Pellarin, 1997).

In many instances, the specific rate constant k3, also known

as the endocytic rate constant ke (Wiley and Cunningham, 1981,

1982), is of particular interest. Although the standard kinetics

dataset is sufficient for estimating Vmax
’ and Km

’ , it is not suffi-

cient for estimating k3; one must know k4 and [R]TOT to estimate

k3 from Vmax
’ . The value of k3 is therefore not identifiable from

such a dataset, and no conclusions could be made based on its

value. Below, an experimental protocol for estimating ke will

be discussed (Wiley and Cunningham, 1981, 1982).
2.3. Model validation: comparing model predictions to
independent experimental data

The final step of the modelling process, model validation, is to

determine whether the model can predict rather than simply

reflect system behaviour. There are few constraints on this

step; a prediction can describe any property of the model

behaviour, and experimental data can be any measured quan-

tity. The only requirement is that the model was not fit to the

experimental data being used for validation. The model in Eq.

(10) was validated for LDL in Hep-G2 cells by comparing the

predicted to measured internalization velocities (ng LDL/

min/mg cell protein) and finding excellent agreement

(R2¼ 0.965) (Harwood and Pellarin, 1997). This phenomenolog-

ical model can thus be considered valid for LDL in Hep-G2
cells. If the predictions did not agree with the data, one should

return to Step 1 to propose a new model.

3. Evolution of mathematical models of endocytosis

In the early 1980s and 1990s, only the basic, macroscopic steps

of the endocytic and trafficking process, such as those shown

in Figure 1, were known. As such, models developed during

these times consisted primarily of compartmental ODEs,

which are able to describe the dynamics of species distribu-

tion in different cellular compartments. As our mechanistic

understanding of endocytosis has grown, including discover-

ies of novel links between endocytosis and signalling, this

new information has been increasingly incorporated into

more and more complex mathematical models. Below we re-

view how mathematical models of endocytosis have evolved

over time as our biological knowledge has grown.

3.1. Modelling endocytosis and signalling
3.1.1. Pitfalls of Scatchard analysis and the endocytic rate
constant
Scatchard analysis is a general technique, which has been

routinely used to calculate ligand affinities and receptor abun-

dances and applied to studies of ligand trafficking. The

dynamic nature of receptor endocytosis and trafficking, how-

ever, violates several assumptions underlying Scatchard

analysis. In fact, depending on how fast receptor internaliza-

tion is compared to ligand–receptor dissociation, one could

obtain Scatchard plots showing negative, positive, or no coop-

erativity in ligand binding (Gex-Fabry and DeLisi, 1984). To

circumvent these inherent problems with Scatchard analysis,

a mathematical-modelling based approach for determining

the endocytic rate constant ke was developed (Wiley and Cun-

ningham, 1981, 1982). The endocytic rate constant quantifies

the rate at which ligand-bound receptors are internalized.

The inverse of this rate constant is the average time that a sin-

gle ligand–receptor complex remains on the cell surface

before being endocytosed, or the half-life for this first-order

process. We noted above that ke was not identifiable from

the data that describe the amount of internalized ligand vs.

time. However, one can identify ke by considering the dynam-

ics of the initial [LRi] accumulation, provided that the two

conditions apply. First, internalized ligand should remain

receptor-bound over the time scale of observation, which gives

d½LRi =dtzn3� . Second, the concentration of surface ligand–

receptor complexes should be essentially constant over the

observation time scale, which means that [LR] is at pseudo

steady-state. We denote this quantity as [LR]quasi-stationary. We

will follow the accumulation of [LRi] before the system reaches

the steady-state, and, therefore, Eq. (7) above does not apply

here. With these assumptions, we have

d½LRi�
dt

¼ ke½LR�quasi�stationary0
½LRiðtÞ�

½LR�quasi�stationary

¼ ket (11)

where t is time. Thus, one can identify the value of ke as the

slope of a straight line arising from a plot of the ratio of inter-

nalized to surface ligand–receptor complex concentrations

versus time. Such data are readily attainable experimentally,
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and this relationship has been shown to hold in multiple

systems (Wiley, 1988; Wiley and Cunningham, 1981, 1982).

For some systems, however, large ligand doses can lead to

significant, rapid depletion of surface receptor numbers over

the time scale of observation, inflating estimates for ke and po-

tentially violating the second condition above. For such cases,

an alternative ‘‘internalization plot’’ method can be used to

find ke (Lund et al., 1990),

½LRi� ¼ ke

Z t

0

½LR�dt (12)

which requires no additional data, but importantly does not

rely on the pseudo steady-state of surface ligand–receptor

complexes. The integration in Eq. (12) can be calculated from

data using standard numerical quadrature methods, such as

the trapezoidal or Simpson’s rules.

For the EGFR system, this modelling-based approach to

measure ke has resulted in the experimental observation

that ke decreases with increasing EGF concentration, rather

than remaining constant, as in most receptor-mediated endo-

cytosis systems (Wiley, 1988). Thus, for EGFR it appears that

the higher the number of occupied surface receptors is, the

longer the average occupied receptor stays on the cell surface.

The explanation for this behaviour is that ligand-bound EGFR

is simultaneously internalized via two pathways: one is rapid

but has low capacity, while the other is slow but has high

capacity (Lund et al., 1990; Wiley, 1988). This general system

structure allows for internalization to switch from the low

capacity route to the high capacity route in an ultrasensitive

manner (Schmidt-Glenewinkel et al., 2008). The low and

high capacity pathways have been identified as the clathrin-

coated pit and constitutive caveolae pathways, respectively

(reviewed in Sorkin and Goh, 2009). Ongoing studies focus

on exploring the molecular links between EGFR signalling

and clathrin-mediated endocytosis (CME).
Figure 3 – A compartmental, ‘‘in silico’’ view of endocytosis and

trafficking. Extracellular ligand L binds to receptor R with rate

constant kon and the receptor-ligand complex LR dissociates with

rate constant koff. Empty receptors are internalized with rate

constant kt, whereas ligand-bound receptors are internalized with

rate constant ke.
3.1.2. Compartmental models and governing principles of
receptor-mediated endocytosis
A variety of specific models have been developed to describe

the endocytosis and trafficking processes for different ligand/

receptor systems. Examples include the models for interferon

and tumor necrosis factor in A549 cells (Bajzer et al., 1989),

LDL in Hep-G2 cells (Harwood and Pellarin, 1997) and hepato-

cytes (Wattis et al., 2008), insulin/GLUT4 in adipocytes and

3T3-L1 cells (Holman et al., 1994; Yeh et al., 1995), Tf in MDCK

cells (Sheff et al., 1999), and EGF in a variety of cell lines (Waters

et al., 1990; Wiley, 1988; Yanai et al., 1991).These models, gen-

erally classified as compartmental ODE models, describe the

dynamics of how ligands, receptors, and their complexes

move into and out of various cellular compartments (Figure 1).

In such models, compartments are considered homogeneous,

or ‘‘well-mixed’’, and species concentrations within a single

compartment are assumed constant, not varying with space.

While the compartmental ODE models for ligand/receptor

endocytosis have helped generate specific knowledge about

their respective systems, it has also become apparent that

there are general governing principles applying similarly to

a variety of receptor systems. Four of the classical endocytic

systems, EGFR, TfR, LDLR, and VtgR (and possibly more) can

all be described by the same simple model structure (Figure 3)
(Shankaran et al., 2007a,b). This model structure is described

by two key dimensionless parameters. The first is the partition

coefficient (b ¼ ke=koff ), which characterizes how fast internal-

ization (which is described by the endocytosis constant ke) is

relative to ligand dissociation from the surface receptors

(koff). The second parameter is the specific avidity

(g ¼ ðKaRTSÞ=ðNavVÞ, where RTS is the total number of surface

receptors, Ka¼ kon/koff is ligand affinity for the receptor, Nav is

Avogadro’s number, and V is the total system volume), which

characterizes how effectively cells capture extracellular

ligand. The values for these two parameters control the

‘‘relaxation time’’, which determines how quickly the number

of surface ligand–receptor complexes returns to steady-state

after a standard impulse of external ligand (usually given as

a very short pulsedmathematically characterized by a Dirac

delta function). Although as both the partition coefficient

and specific avidity increase, the relaxation time decreases,

depending on the absolute values of these parameters, the

relaxation time has different sensitivity to changes in their

values. In fact, receptor systems can be classified into three

basic regimes based on this differential sensitivity: (i) an

avidity-controlled regime, in which the relaxation time is

controlled by the specific avidity, but not by the partition coef-

ficient, and where TfR and LDLR operate (ii) a consumption-

controlled regime in which the relaxation time is sensitive

to the partition coefficient but not to the specific avidity, and

where VtgR operates and (iii) a dual-sensitivity regime, in

which both the specific avidity and the partition coefficient

can effectively control relaxation time, and where EGFR oper-

ates. These results have biological implications, showing that

the behaviour of different receptor systems can only be

controlled in a certain way, depending on the regime. For

TfR and LDLR, an effective strategy for control is changing

the total surface receptor concentration RTS. Indeed, cells

upregulate the total levels of these receptors either at the tran-

scriptional level or by rapid plasma membrane translocation

from intracellular pools (Makar et al., 1998; Rao et al., 1986;

Ward and Kaplan, 1986). Since TfR and LDLR are mainly

involved in nutrient transport, it can biologically be preferable

that their endocytic behaviour is primarily controlled by how
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effectively a cell can capture the nutrients. On the other hand,

EGFR endocytosis can be controlled by either parameter, and

is in fact regulated both by rapid ligand-induced internaliza-

tion (b) and degradation (g) (Lund et al., 1990; Wiley, 1988).

On the other end of the spectrum, VtgR is only effectively con-

trolled by the partition coefficient, and therefore is regulated

by changes in ke (Opresko and Wiley, 1987).

Densensitization and ligand/signal removal are widely

accepted roles for ligand-induced receptor downregulation.

However, given the emerging view that endocytosis plays ma-

jor roles in signalling dynamics, one might expect that ligand-

induced receptor downregulation can also control the signal

processing characteristics of receptor systems. Indeed, as the

rate of receptor downregulation increases (b increases), the re-

laxation time decreases and synchronization between the [L]

and [LR] dynamics improves (Shankaran et al., 2007a,b). Thus,

ligand-induced receptor downregulation results in faster

signal processing, which better reflects the extracellular ligand

dynamics. There is a trade-off though, between increased

response speed and output signal magnitude, which decreases

with increasing downregulation. Such ke-controlled response

speed characteristics should be particularly important for

chemotactic cell migration, where the number of ligand-bound

receptors must respond quickly to changing gradients of

growth factors. Indeed, ligand-induced EGFR endocytosis

seems to be critical for EGF-gradient induced cell migration

(Caswell et al., 2008; Jekely et al., 2005). Importantly, such

improved response speed behaviour only occurs for receptor

systems, where the response speed is sensitive to changes in

ke. EGFR of course falls into the dual-sensitivity regime, which

is effectively controlled by ke (Shankaran et al., 2007a).

Interestingly, whenligand concentrationsare small,as is typ-

ical of in vivo situations, the equations that govern the dynamics

of the ligand–receptor system appear analogous to those thatde-

scribe an automobile spring/shock absorber system (also known

as a classical harmonic oscillator or spring–dashpot system)

(Shankaran et al., 2007b). In terms of the mathematical equa-

tions, the concentration of surface ligand–receptor complexes

is analogous to the automobile vertical coordinate (position),

the car mass is related to the total receptor concentration and li-

gand affinity, and external ligand concentration is analogous to

an external force. Increasing receptor downregulation is the

same as lubricating the shock absorber, which allows it to return

to its proper position more quickly such that it is ready to re-

spond to the next perturbation, being a change in ligand concen-

tration or external force. Although too much lubrication (or too

strong of a spring) may cause unwanted oscillatory behaviour

in the car, it was predicted that the EGFR system will never

display such oscillatory behaviour no matter how large ke

becomes (Shankaran et al., 2007b). This modelling-based

prediction has yet to be tested experimentally.

We conclude that despite the diversity of receptor-

mediated endocytosis systems, important features of their

temporal behaviour can be characterized by only two dimen-

sionless parameters.

3.1.3. Incorporating signalling processes into models of
receptor trafficking
The notion that endocytosis and signal transduction are two

inseparable, bi-directionally interacting systems is becoming
increasingly appreciated. We first will focus on signalling

and endocytosis of the ErbB growth factor receptor family,

which operates in multiple tissues and whose deregulation

is implicated in the development and progression of several

types of cancer (Yarden and Sliwkowski, 2001). The ErbB fam-

ily consists of four receptors, ErbB1, 2, 3 and 4, and ErbB1 is

also known as EGFR. When ligands bind to these receptors,

the receptors can homo and heterodimerize with each other;

this activates their intrinsic tyrosine kinase activity and

propagates signals into the cell. Although different ligands

target distinct ErbB family receptors, downstream signalling

is funnelled through shared kinase cacades, such as the

extracellular regulated kinase 1/2 (ERK) cascade and the phos-

phatidylinositol 3-kinase PI3 K/AKT pathways. The distinct

temporal profiles and duration of ERK1/2 activation were

shown to be the determinant of critical cell-fate decisions,

such as differentiation versus proliferation (Kholodenko,

2007; Marshall, 1995). For example, EGF or heregulin (HRG) in-

duce transient vs sustained activation of ERK and proliferation

vs differentiation of MCF7 breast cancer cells (Nagashima

et al., 2007). It was shown both experimentally and using

simulations in silico that the pronounced difference in the

temporal profiles of effector kinases activated by distinct

receptors is related, at least partially, to the different kinetics

of receptor endocytosis (Birtwistle et al., 2007; Haslekas et al.,

2005; Hendriks et al., 2005; Lynch et al., 2004). This is due to the

fact that only EGFR, and not ErbB2-4, undergo significant li-

gand-induced endocytosis and degradation. While both EGFR

homodimers and EGFR–ErbB2 heterodimers are rapidly inter-

nalized, EGFR–ErbB2 homodimers recycle to the cell surface,

whereas EGFR homodimers remain internalized. Thus, ErbB2

overexpression, which occurs in w25% of all breast cancers,

preserves EGF receptors at the cell surface, preventing EGF

and EGFR degradation and sustaining mitogenic signalling.

Endocytosis and trafficking has been important to con-

sider for proper modelling of ErbB signalling (Birtwistle

et al., 2007; Resat et al., 2003; Schoeberl et al., 2002), and

also for modelling of other systems, such as transforming

growth factor b (TGFb) (Vilar et al., 2006), platelet derived

growth factor (PDGF) (Wang et al., 2009) and EGF/insulin

co-induced signalling (Borisov et al., 2009). Although all these

studies incorporate significant molecular detail of signal

transduction processes, they predominantly describe traf-

ficking processes as they were known in the 1980’s, i.e.,

without the mechanistic detail that is now becoming avail-

able. Despite the mechanistic simplicity of endocytosis de-

scriptions within complex signal transduction models, the

simulation results made it clear that endocytic processes

play a major role in dictating the outcome behaviour. Future

signal transduction models will incorporate the molecular

mechanisms of endocytic processes to understand their pre-

cise roles in the regulation of signal transduction, as well as

their potential implications for cancer studies.
4. Modelling endocytosis in space and time

So far, we focused on the temporal aspects of endocytosis,

while the spatial aspects of signal transfer were only roughly

accounted for by considering well-mixed interacting
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compartments at different locations. Although such ap-

proaches are valuable, many aspects of endocytosis and sig-

nalling can only be understood by considering the spatial

dimension explicitly. Mathematically, this involves PDEs,

which naturally arise from the description of rate processes

in both space and time.
4.1. Brief basics of spatial modelling

The derivation of a PDE model is conceptually similar to that

of an ODE model: a general species balance equation is applied

that sets the temporal rate of change of a species in a particular

spatial location equal the sum of all processes that produce the

species, minus all those that consume it, plus the net species

movement rate into that location. This verbal definition can be

summarized mathematically as

vCðx; y; z; tÞ
vt

¼
X

i

npi �
X

i

nci þ nm: (13)

Here, the left hand side is the partial derivative of species con-

centration C with respect to time t, the dependence of C on

both time and the spatial coordinates x, y, and z is denoted ex-

plicitly, S denotes a summation, and n denote rates, with sub-

scripts p for production, c for consumption, and m for

movement. Within cells, the net movement rate nm of species

molecules can be subdivided into a diffusive component nd

and trafficking component nt. Assuming that the diffusivity

D of species C does not change in space, the diffusive transport

rate can be described by

nd ¼ DDC ¼ D

�
v2C
vx2
þ v2C

vy2
þ v2C

vz2

�
(14)

where D is theLaplacian operator, whoseexpression is given for

a standard Cartesian, or rectangular, coordinate system. Traf-

ficking is velocity-driven transport, when all molecules move

with the same particular velocity at each location. Therefore,

the trafficking transport rate depends on the directional veloc-

ities, which we denote by Vq, where q is x, y, or z. If the concen-

tration C would not change in space, then directional trafficking

of molecules of the species C would not change the amount of

molecules in any particular location. If the concentration is de-

creasing in the direction of positive velocity, then velocity-

driven transport increases the concentration, and vice versa.

Whether concentration is decreasing or increasing is character-

ized by the concentration gradients, or the first partial deriva-

tives of concentration with respect to the spatial dimensions.

Thus, the trafficking transport rate can be written as,

nt ¼ �
�

Vxðx; y; z; tÞ
vC
vx
þ Vyðx; y; z; tÞ

vC
vy
þ Vzðx; y; z; tÞ

vC
vz

�
: (15)

Although in Eq. (15), the velocities can change in space and time,

this equation is predicated upon the assumption that these

velocities change continuously and smoothly. Thus, these con-

vection PDE models cannot capture the stochastic, ‘‘back and

forth’’ movement of endosomes (Wacker et al., 1997). However,

stochastic fluctuations can be less important for bulk species

transport over the long distances (mm) and time scales (min).

Putting everything together we arrive at Eq. (16), which is

commonly referred to as a reaction-diffusion-convection

equation (for a standard Cartesian coordinate system).
vC

vt
¼
X

i

npi �
X

i

nci þ D

�
v2C

vx2
þ v2C

vy2
þ v2C

vz2

�

�
�

Vx
vC

vx
þ Vy

vC

vy
þ Vz

vC

vz

�
ð16Þ

Modelling of endocytosis thus far has primarily considered

the reaction and diffusion components, although there is no

real barrier to including the trafficking components.

4.2. Endocytosis and spatial signalling gradients

In many signal transduction systems, signals originate on

the plasma membrane, but should propagate to distant

locations, such as the nucleus. For example, EGFR generates

phosphorylation signals that propagate through the mem-

brane bound Ras to the ERK pathway, and active, phos-

phoryated ERK travels to the nucleus to enact gene

expression changes. If signal deactivators (terminators),

such as phosphatases, are homogeneously distributed in

the cell and signals can only move by diffusion, then as

one moves away from the plasma membrane, there will

be fewer signals, creating a signalling gradient. Without en-

docytosis, the depth of such a gradient depends on the sig-

nal deactivation rate and the diffusion coefficient. If signal

deactivation is a first-order process with rate constant k,

then the level of active signal exponentially decays away

from the plasma membrane, with characteristic length

a�1 ¼
ffiffiffiffiffiffiffiffiffi
k=D

p
(Brown and Kholodenko, 1999). Thus, if signal

deactivation is fast, or diffusion is slow, then precipitous

signalling gradients may occur. In fact, a typical deactiva-

tion rate constant of w1 s�1 and protein diffusion coeffi-

cient of w1 mm2 s�1, gives a�1 w 1 mm, much smaller than

the distance from the plasma membrane to the nucleus in

large mammalian cells. Since endocytosis brings signals

from the plasma membrane into the cell interior, closer to

the nucleus, one plausible role of endocytosis may be to

overcome this problem of potentially steep activity gradi-

ents that can impede spatial signal propagation. This situa-

tion may be represented as a simple reaction–diffusion

model, schematically shown in Figure 4A (Kholodenko and

Birtwistle, 2009), and described by,

vC
vt
¼ 0 ¼ DDC� kC (17)

where D here is the Laplacian operator in spherical coordi-

nates (different from rectangular coordinates). Since endo-

somes move slowly compared to the time scale of

signalling processes, we assume the position of endosomes

to be fixed and located halfway from the plasma mem-

brane to the nucleus for illustrative purposes. If half of

the signal generators are in the signalling endosomes,

while the other half reside on the plasma membrane of

a cell with radius Rcell, the steady-state concentration gra-

dients behave as shown in Figure 4B, C. If a*Rcell [ 10, then

either diffusion is too slow or deactivation is too fast for

endocytosis to help signal propagation. On the other

hand, if a*Rcell� 10, then signals can propagate without

help from endocytosis. When a*Rcell ˜ 10, endocytosis may

play a critical role in spatial signal propagation from the

plasma membrane to the cell nucleus (Kholodenko and

Birtwistle, 2009).



Figure 4 – Effects of endocytosis on spatial signal propagation. A. Schematic of endocytosis-enhanced signal propagation in a spherically

symmetric cell. Phosphorylation signals are generated at the plasma membrane and in a small region of space where the endosomes reside, and are

terminated by phosphatases everywhere else. Signals can diffuse throughout the region between the plasma and nuclear membranes. B and C.

Steady-state spatial profiles of the concentration C of active signal as a function of the distance d from the plasma membrane d [ RPM L r, where

RPM is the cell radius. The signalling endosomes are assumed to be loosely packed in the cylindrical layer between RPM
endos and RNM

endos. Dash-dot lines

correspond to cases where half the kinase activity localized at the endosomes, while solid lines denote cases where all kinase activity is located at the

plasma membrane. Panel B corresponds to a cell with dimensions RPM [ 9 mm, Rnuc [ 3.5 mm, RPM
endos[6:5 mm, RNM

endos[6:2 mm. The endosome

width, 0:3 mm[RPM
endosLRNM

endos; was taken to be three times a typical endosome diameter (w100 nm), since endosomes are not well-packed. Panel C

corresponds to a large cell, such as a Xenopus oocyte, with dimensions RPM [ 1000 mm, Rnuc [ 390 mm, RPM
endos[650 mm, and RNM

endos[649 mm.
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4.3. Long distance transport

Spatial gradients pose a particular problem when signals

travel over distances greater than 100 mm, where diffusive

transport is insufficient, because of the following: (i) diffusion

is too slow, since the distance traveled by diffusion is propor-

tional to the square root of time and (ii) signals commonly

vanish owing to termination by deactivating enzymes in the

media. For the transport of signals from the plasma mem-

brane to the nucleus in large cells like Xenopus oocytes

(w1 mm diameter), based on the above a*Rcell w 10 condition,

if signal deactivation (termination) activity is low

(a< 0.01 mm�1), then endocytosis combined with simple diffu-

sion is a plausible mechanism for signal propagation to the

nucleus in such cells. However, typical diffusion coefficients
(w1–10 mm2/s) and termination activities (w1 s�1) give

a w1–0.1, so unless termination activity is regulated to be ex-

tremely low during the initial time period of 10–20 min follow-

ing stimulation, it is unlikely that endocytosis plays

a significant role for signal propagation in Xenopus oocytes. Al-

ternatively, cytoplasmic scaffolds and molecular motor driven

transport of signalling complexes may play a role in spatial

signal propagation by protecting signals from cytoplasmic de-

phosphorylation (Perlson et al., 2005, 2006).

Centimeter and even meter scale transport of signals, such

as from neuron terminals to the nucleus via the axon (e.g.

from a giraffe’s lower leg to its brain), present an even more

challenging problem for signal propagation within a cell

(Howe and Mobley, 2004). Although the retrograde transport

of endosomes is an important signalling vehicle, in the NGF–
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TrkA system, signals can propagate through mechanisms

other than endosomal transport (MacInnis and Campenot,

2002). Additionally, the average velocity of molecular motors

(1–10 mm/sec (Hill et al., 2004)) is not fast enough to account

for experimentally observed signal propagation time (MacIn-

nis et al., 2003), posing the question of what mechanisms

may be able to transport signals faster than retrograde trans-

port, and over distances of meters. It has been proposed that

traveling waves of protein activation can perform this task

(Markevich et al., 2006). Such waves can occur when a down-

stream kinase positively feeds back to a cytoplasmic upstream

kinase, and the stimulus duration exceeds a certain threshold.

Simulation results suggest that these traveling waves trans-

port signals at tens of mm/sec, and as the strength of positive

feedback is increased, the velocity increases (up to hundreds

of mm/sec). These traveling waves are much faster than retro-

grade transport; fast enough potentially to explain the exper-

imentally observed speed of signal propagation in the NGF–

TrkA system (Markevich et al., 2006).

4.4. Endocytosis and cell polarization
Not only is endocytosis closely related to signal transduction,

but it also plays a key role in yeast cell polarization, which is

manifested by highly localized Cdc42 concentration (Marco

et al., 2007; Valdez-Taubas and Pelham, 2003). Modelling sug-

gests that a main cell polarization mechanism involves local-

ized endo- and exocytosis in a small region of the plasma

membrane called a ‘‘directed transport window’’, coupled

with characteristically slow diffusion of proteins in the yeast

plasma membrane (Marco et al., 2007; Valdez-Taubas and Pel-

ham, 2003). In fact, any in silico changes to the measured local

endocytosis rates reduced the model-predicted height and

sharpness of the local Cdc42 concentration peak, or polarity,

thus suggesting the specific endocytosis rate magnitudes

have evolved to optimize cell polarity. However, protein diffu-

sion in the yeast plasma membrane is much slower than that

in a mammalian cell plasma membrane, and it is yet unclear

whether the same polarization mechanisms and optimality

apply in mammalian systems.

Endocytosis can also play a role in creating non-uniform

distributions of receptors on the cell plasma membrane.

When giant Hela cells are evenly spread on a surface, there

is a non-uniform distribution of Tf and LDL receptors, which

are concentrated at the periphery (Bretscher, 1983). However,

since coated pits are uniformly distributed on the cell surface,

endocytosis develops homogeneously. On the other hand,

exocytosis occurs only at the leading edge of Hela cells

(Bretscher, 1983). Based on these considerations, a PDE model

was developed to explain this non-uniform surface receptor

distribution, which consists of a description of both bulk

membrane trafficking and receptor transport on a disc-shaped

cell (Goldstein and Wiegel, 1988). Since endocytosis occurs

uniformly over the entire cell surface, but exocytosis only re-

places membrane at the leading edge, there is bulk membrane

flow from the leading edge to the cell centre. Modelling sug-

gests that the bulk membrane velocity v is linearly propor-

tional to the distance from the cell centre (r) and inversely

proportional to the mean time (sm) that a uniformly distrib-

uted membrane component spends on the cell surface

(n ¼ �r=2sm). In this scenario, the membrane velocity is largest
at the periphery and zero at the cell centre. As a result, any

receptor on this moving membrane will have a non-uniform

distribution, simply because receptors flow away from the

cell periphery faster than they do from interior points. How-

ever, the distribution of receptors depends not only on the

membrane velocities but also on diffusion and the kinetics

of receptor endocytosis. At the cell periphery where mem-

brane velocity is high, diffusion plays a small role for the re-

ceptor distribution. Since velocity decreases as the cell

centre is approached, there is a critical radius r� ¼ ð4DsmÞ1=2

where the membrane flow velocity equals effective receptor

diffusive velocity. At this radius, membrane velocity and dif-

fusion have equal control over the receptor distribution, and

points interior to this radius are diffusion controlled. Thus,

as the diffusion coefficient increases, a greater percentage of

the receptor distribution on the cell surface is diffusion con-

trolled, and therefore more uniform. In terms of endocytosis,

if receptors are excluded from coated pits, then they are endo-

cytosed more slowly than a uniformly distributed membrane

component. In this case, membrane flow and diffusion domi-

nate the receptor transport, which causes receptors to localize

towards the cell centre. On the other hand, if receptors are

preferentially recruited to coated pits, making their endocytic

rate faster than that of a uniformly distributed component,

then endocytosis dominates the receptor transport, and

more receptors are located towards the cell periphery. Thus,

changing global receptor endocytosis rates may create quali-

tatively different distributions of receptors on a cell surface.

Such mechanisms may help explain the critical roles of endo-

cytosis in regulating stem cell polarity and their asymmetric

division (Füerthauer and Gonzalez-Gaitan, 2009).

4.5. Endocytosis and cancer treatment efficacy

The success of cancer treatments depends on the spatial dis-

tribution of the treatment within the tumor. Although small

molecule chemotherapeutics freely diffuse into cells, many

large treatments, such as monoclonal antibodies, toxin-conju-

gated antibodies, and enzyme-conjugated antibodies, bind to

and are endocytosed by tumor cells. When these cures are

endocytosed, they remain inside the cell to be eventually de-

graded, but importantly are not able to penetrate further

into the tumor. Thus, endocytosis affects the spatial distribu-

tion of cures within a tumor, and therefore their efficacy. To

understand the precise roles endocytosis plays in determining

cancer treatment efficacy, spatial reaction–diffusion models

have been developed. (Ackerman et al., 2008; Dee and Shuler,

1997; Thurber and Wittrup, 2008; Roth, 2005; Zhu et al., 2006).

For treatments whose action only requires cell surface bind-

ing, as endocytic rates increase drug penetration and there-

fore efficacy decrease; models in this case can provide

design criteria for upper bounds on endocytic rates of the

treatment. On the other hand, for drugs whose action is im-

proved and/or depends upon internalization, there is an opti-

mal endocytic rate for drug efficacy, since faster endocytosis

would lead to more medication inside tumor cells, but at the

cost of less spatial penetration into a tumor. For these treat-

ments, reaction–diffusion models can be used to find this op-

timum endocytic rate. Thus, not only can spatial models help

us understand the biochemistry and cell biology of
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endocytosis, but can also play an important role for guiding

cancer treatment design.
5. Future directions

Modelling of endocytic processes has clearly provided insight

into their dynamic behaviour that would otherwise not be

possible. Modelling will continue to play a role, as biological

research uncovers new mechanistic knowledge and raises

new questions about endocytosis and signalling. More mech-

anistic descriptions of endocytosis and trafficking processes

will allow us to gain insight into how specific proteins, such

as dynamin, clathrin, epsin, AP-2, Cbl and the Rab family

GTPases, precisely control trafficking rates and protein distri-

butions. Another major frontier is full-fledged integration of

signalling and endocytic processes. Molecular knowledge on

the signalling level is vast and has been heavily incorporated

into models. While endocytic processes have been incorpo-

rated into many signal transduction models, their description

has been mostly phenomenological, not considering the rich

mechanistic dialogue between signalling and endocytosis.

New mechanistic models will allow us to address yet unre-

solved questions, such as what is the exact contribution of sig-

nalling on endosomes to the overall signalling responses.

Importantly, these models will also allow us to uncover roles

for the newly found molecular mechanisms and links be-

tween endocytosis and signalling.
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